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Abstract. Text search engines are inadequate for indexing and search-
ing XML documents because they ignore metadata and aggregation
structure implicit in the XML documents. On the other hand, the query
languages supported by specialized XML search engines are very com-
plex. In this paper, we present a simple yet flexible query language,
and develop its semantics to enable intuitively appealing extraction of
relevant fragments of information while simultaneously falling back on
retrieval through plain text search if necessary. We also present a simple
yet robust relevance ranking for heterogeneous document-centric XML.

1 Introduction and Motivation

Popular search engines (such as Google, Yahoo!, MSN Search, etc) index docu-
ment text and retrieve documents efficiently in response to easy to write queries.
Unfortunately, these search engines suffer from at least two drawbacks: (a) They
ignore information available in the metadata / annotations / XML tags1. (b)
They are oblivious to the underlying aggregation structure implicit in the tree-
view of XML documents. On the other hand, specialized search engines for
querying XML documents require some sophistication on the part of the user to
formulate queries [2, 17].

In this paper, we present a query language that is simple to use and yields
results that are more meaningful than the corresponding text search would yield
on an XML document. Specifically, it facilitates exploitation of metadata to
extract relevant fragments of information without sacrificing the ability to fall
back on retrieval through plain text search.
Example 1. Consider the following fragment2 of SIGMOD record [3].

- <article>
<title>A Note on Decompositions of Relational Databases.</title>

- <authors>
<author position="00">Catriel Beeri</author>
<author position="01">Moshe Y. Vardi</author> </authors> </article>

1 Actually, search engines do analyze the content associated with the META-element,
the TITLE-element, etc, and factor in information implicit in the text fonts and
anchor text (link analysis), for relevance ranking an HTML document [1].

2 The word “Database” in the second record appears as “Data Base” in the original
dataset.



2

- <article>
<title>Implementation of a Time Expert in a Data Base System.</title>

- <authors>
<author position="00">Ricky Overmyer</author>
<author position="01">Michael Stonebraker</author> </authors> </article>

Searching for “articles by Stonebraker” should retrieve the above page, and bet-
ter yet, cull out information about the title, co-authors, etc, of Stonebraker’s
articles while ignoring articles by others. Similarly, searching for “articles with
database” in their title should ideally yield all the above articles.

Example 2. Consider the following fragment of Mondial database [3]. Observe
that a lot of factual data is captured via attribute bindings.

<mondial>
<continent id="f0_119" name="Europe" /> ...
<country id="f0_149" name="Austria" capital="f0_1467" population="8023244"

datacode="AU" total_area="83850" population_growth="0.41"
infant_mortality="6.2" ... government="federal republic" ...>

<name>Austria</name> ...
- <province id="f0_17447" name="Vienna" ...>

- <city id="f0_1467" country="f0_149" province="f0_17447" ...>
<name>Vienna</name> <population year="94">1583000</population> </city>

</province> ...
<languages percentage="100">German</languages>
<encompassed continent="f0_119" percentage="100" /> ...
<border length="784" country="f0_220" /> ...

</country> ...
</mondial>

Searching for “Austria” should fetch the above record from the database from
which further geographic information about its cities and provinces can be de-
termined. The internal name/code for Austria in the database can be used to
infer additional information related to bordering countries, border lengths, etc.

Example 3. Consider the following heterogeneous XML fragment [5].

<document>
<article id="1">

<author><name>Adam Dingle</name></author>
<author><name>Peter Sturmh</name></author>
<author><name>Li Zhang</name></author>
<title>Analysis and Characterization of Large-Scale Web Server Access

Patterns and Performance</title>
<year>1999</year>
<booktitle>World Wide Web Journal</booktitle> </article>

<article id="2" year="1999">
<author name="A. Dingle" ></author>
<author name="E. Levy" ></author>
<author name="J. Song" ></author>
<author name="D. Dias" ></author>
<title>Design and Performance of a Web Server Accelerator</title>
<booktitle> Proceedings of IEEE INFOCOM </booktitle> </article>

<article id="3">
@inproceedings{IMN97,
author="Adam Dingle and Ed MacNair and Thao Nguyen",
title="An Analysis of Web Server Performance",
booktitle="Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM)",
year=1999} </article>

</document>
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It contains information about articles expressed in three different ways. A
robust search strategy should ideally deliver all the three records when articles
by “Dingle” are sought.
Example 4. Similar issues arise in the context of XML representation of bi-
nary relationships and XML serialization of RDF model, as illustrated below
[13]. Specifically, “same” information may be expressed differently based on the
preferences and views of the authors of web documents.

<course name="Discrete Mathematics">
<lecturer>David Billington</lecturer> </course>

<lecturer name="David Billington">
<teaches>Discrete Mathematics</teaches> </lecturer>

<teachingOffering>
<lecturer>David Billington</lecturer>
<course>Discrete Mathematics</course> </teachingOffering>

Our work builds on and extends the seminal work of Cohen et al [4] on
XSEarch, a search engine for XML documents. XSEarch’s query language em-
bodies the simplicity of Google-like search interface (easing the task of query
formulation) while exploiting the hierarchical structure of nested XML-elements
to deliver precise results (that is, containing semantically related pieces of infor-
mation). However, their query language ignores XML-attributes entirely. In this
paper, we smoothly extend XSEarch’s query language to accommodate XML-
attributes and their string values with the following benefits:

– XML documents with attributes can now be queried. Observe that, in the
document centric applications of XML, information bearing strings are in
text nodes, while in the data centric applications of XML, information bear-
ing strings are associated with attributes.

– In spite of having general rules of thumb about when to use XML-elements
and when to use XML-attributes for expressing a piece of information [12],
it is still quite common to see authoring variations that mix the two. For
instance, one can find the following “equivalent” pattern in use: <T A="s"/>
and <T> <A> s </A> </T>. Accommodating this variation can improve query
recall .

– Semantic Web formalisms such as RDF, OWL, etc [14, 13, 15] build on XML
and make extensive use of attributes. In fact, the above two forms are equiv-
alent in RDF. So a simple XML Search Engine that can deal with attributes
will be a welcome addition to the toolset till customized search engines for
RDF and OWL become commonplace.

Furthermore, in many applications, XML documents may get progressively re-
fined via a sequence of annotaters. For instance, in an initial step, an entire name
in a text may be recognized and enclosed within <name> ... </name> tags,
while in a subsequent step, it may be refined by delimiting the first name and the
last name using <firstName> ... </firstName> and <lastName> ... </lastName>
tags respectively.

In Section 2, we present other related works. In Section 3, we discuss the
details of the proposed XML query language, develop its semantics, and illustrate
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its use through examples. In Section 4, we conclude with suggestions for future
work.

2 Other Related Works

Florescu et al [5] present the design and implementation of the XML-QL lan-
guage that supports querying of XML documents based on its structure and its
textual content, facilitating search of XML documents whose structure is only
partially known, or searching heterogenous XML document collections. The im-
plementation uses an off-the-shelf relational database system. In XIRCL, Fuhr
and Grojohann [6] incorporate different answer granularity, robust query match-
ing, and IR-related features such as relevance ranking using probabilistic models.
Meyer et al [7] describe a search engine architecture and implementation based
on XIRCL. Carmel et al [8] use XML fragments as queries instead of inventing
a new XML query language, and extend the traditional vector space model for
XML collections. The weight associated with an individual term depends on its
context, and the ranking mechanism is used to deal with imperfect matches and
high recall. In comparison to all these approaches, our query language is less ex-
pressive, the weighting mechanism and ranking is simpler, given that the query
answer has already culled out the relevant answer. Schlieder and Meuss [9] re-
duce XML querying to tree matching by simulating attributes via elements and
strings via word-labelled node sequences, and adapt traditional IR techniques
for document ranking. Our approach resembles this work in spirit, but again the
query language is simpler. For example, queries involving an element name and
a keyword has different interpretation which is robust with respect to the level
of annotations. In contrast with approaches so far, Theobald and Weikum [10]
focus on heterogenous documents, path-based queries and semantic-similarity
search conditions. Grabs and Schek [11] try to capture the intuition that the
content that is more distant in the document tree is less important than the one
that is close to the context node while determining term weights and relevance.
On the other hand, we want to preserve the semantic impact of a piece of text
irrespective of the level of annotations surrounding it.

3 Query Language

The standard search engine query is a list of optionally signed keywords. For
querying XML documents, Cohen et al [4] allow users to specify labels and
keyword-label combinations that must or may appear in a satisfying XML doc-
ument fragment. Our queries allow keywords, element names, and attribute
names, optionally with a plus (“+”) sign. Intuitively, element/attribute names
relate to type information/metadata, while keywords relate to concrete val-
ues/data.
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3.1 Query Syntax

Formally, a search term has one of the following forms: e:a:k , e:a:, :a:k , e::k ,
e::, :a:, ::k , l:k , l: and :k , where e is an element name, a is an attribute name,
l is an element/attribute name, and k is a keyword (string). Furthermore, l:k is
interpreted as l::k or :l:k, l: is interpreted as l:: or :l:, and :k is interpreted as
::k . A query is a sequence of optionally signed search terms. Signed search terms
are required to be present in the retrieved results, while unsigned search terms
are desirable in the retrieved results.

3.2 XML Datamodel

Conceptually, an XML document is modelled as an ordered tree [16]. For our
purposes, XML tree contains the following types of nodes:

– Root node: The root node is the root of the tree. The element node for the
document element is a child of the root node.

– Element node: There is an element node for every element in the document.
The children of an element node are the element nodes and the text nodes
(for its content).

– Text node: Character data is grouped into text nodes.
– Attribute node: An element node can have an associated set of attribute

nodes; the element is the parent of each of these attribute nodes; however,
an attribute node is not a child of its parent element. Each attribute node
has a string-value.

(We ignore namespace nodes, processing instruction nodes, and comment nodes,
and the ability to create additional internal links between tree nodes.)

3.3 Single Search Term Satisfaction

We specify when a search term is satisfied by an XML subtree. In contrast to
Cohen’s work, it abstracts from differences in representation of a piece of in-
formation either as an attribute-value pair of an element or as the element’s
subelement enclosing the value text, among other things. Additionally, it ad-
dresses the situation where the text of an XML document can be further refined
through annotation. Observe also that a text node contains a keyword if the key-
word is a prefix of a word in it. (Alternatively, containment can require that the
keyword belong to the text node viewed as a bag of words, or that the keyword
match a word in the text node after case conversion, stop words elimination,
stemming, and synonym expansion.)

– The search term e:a:k is satisfied by a tree containing a subtree with the top
element e that is associated with the attribute a with value containing k , or
a subelement a with text node containing k .

– The search term e:a: is satisfied by a tree containing a subtree with the top
element e that is associated with the attribute a, or subelement a.
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– The search term :a:k is satisfied by a tree containing a subtree with a top
element that is associated with the attribute a with value containing k , or
a subelement a with text node containing k .

– The search term e::k is satisfied by a tree containing a subtree with the top
element e and that has
• an attribute associated with the value containing k , or
• a child element with an associated attribute value containing k , or
• a descendant text node containing k .

– The search term e:: is satisfied by a tree containing a subtree with the top
element name e.

– The search term :a: is satisfied by a tree containing a subtree with a top
element that is associated with the attribute a or a subelement a.

– The search term ::k is satisfied by a tree containing
• a subtree with a top element that is associated with an attribute value

containing k , or
• the text node containing k .

Observe that a query can use detailed knowledge of XML document structure
(for example, via e:a:k etc), or have the flexiblity to express textual search (for
example, via :k , etc).

Example 1 (cont.) The search term author:: is satisfied by
<author position="00">Catriel Beeri</author>
<author position="01">Moshe Y. Vardi</author>
<author position="00">Ricky Overmyer</author>
<author position="01">Michael Stonebraker</author>

and also by trees containing such subtrees. The most preferred tree satisfying
:Stonebraker is <author position="01">Michael Stonebraker</author>. Sim-
ilarly, the most preferred trees satisfying title::Data are

<title>A Note on Decompositions of Relational Databases.</title>
<title>Implementation of a Time Expert in a Data Base System.</title>

<title>Problems of Optimistic Concurrency Control in Distributed Database Systems.</title>

Example 2 (cont.) The search term country::Austria is satisfied by
<country id="f0_149" name="Austria" capital="f0_1467" population="8023244"

datacode="AU" total_area="83850" population_growth="0.41"
infant_mortality="6.2" ... government="federal republic" ...> ...

</country>

The search term :name:Vienna is satisfied by
<province id="f0_17447" name="Vienna" ...>

<city id="f0_1467" country="f0_149" province="f0_17447" ...>
<name>Vienna</name> <population year="94">1583000</population> </city>

</province> ...

but name::Vienna is satisfied only by a part of it, that is, <name>Vienna</name>.
The latter is also the most preferred tree satisfying :name:Vienna. (Observe that
this query response seems to “verify existence” as opposed to “extract anwser”.)

Example 3 (cont.) All the three articles given in Example 3 in Section 1 satisfy
the search term article::Dingle. Similarly, the search term :Dingle satisfies the
following three records, while the search term author:Dingle misses the last one.
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<author><name>Adam Dingle</name></author>
<author name="A. Dingle" ></author>
<article id="3">

@inproceedings{IMN97,
author="Adam Dingle and Ed MacNair and Thao Nguyen",
title="An Analysis of Web Server Performance",
booktitle="Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM)", year=1999}
</article>

3.4 Query Satisfaction

In order for a collection of XML subtrees to satisfy a query, each required (resp.
optional) search term in the query must (resp. should) be satisfied by some
subtree in the collection, and furthermore, all the subtrees in the collection must
be meaningfully related. The notion of satisfaction can be formalized via subtree
sequences.

Similarly to Cohen et al [4], a query Q(t1, t2, ..., tm) is satisfied by a sequence
of subtrees and null values (T1, T2, ..., Tm), if

– For all 1 ≤ i ≤ m: Ti is not the null value if ti is a signed/plus/required
term.

– For all 1 ≤ i ≤ m: if Ti is not the null value, then ti is satisfied by Ti.
– The members of the set { Ti|1 ≤ i ≤ m ∧ Ti is non-null} are interconnected.

Two subtrees Ta and Tb are said to be interconnected if the path from their
roots to the lowest common ancestor does not contain two distinct nodes
with the same element, or the only distinct nodes with the same element are
these roots.

The intuition behind interconnected-ness is that if the common ancestor can
be viewed as a collection containing multiple entities of the same type, as ev-
idenced by the same node label, then interconnected nodes are related to the
same “physical” entity.

3.5 Query Answer

The definition of query answer captures conciseness, precision, and adequacy of
extracted results. A query answer for a query Q(t1, t2, ..., tm) with respect to an
XML tree T is a collection of XML subtrees U of T such that it satisfies Q, and
furthermore, there does not exist another (distinct) satisfying collection of XML
subtrees P that is preferred to U . (Note that P is preferred to P, according to
the following definition.)

Consider the subtree sequences (P1, P2, ..., Pm) and (U1, U2, ..., Um) such that
U = {Ui | 1 ≤ i ≤ m ∧ Ui 6= null} and P = {Pi | 1 ≤ i ≤ m ∧ Pi 6= null}. P is
preferred to U if and only if

1. (Conciseness) P ⊆ U .
2. (Precision) ∀i : ti is a term ⇒

(Pi = Ui) ∨ (Pi is embeddable / is a subtree of Ui).
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3. (Adequacy[Maximal Information])
∀i : ti is an unsigned term ⇒ (Pi = Ui) ∨ (Pi 6= null).

The conciseness criteria captures preference for the smallest satisfying subset
of trees. The alternative of using minimum cardinality criteria seems unsound
because it may eliminate other independent/non-overlapping answers that acci-
dentally have more subtrees.

The precision criteria captures preference for the smallest fragment of a sub-
tree that is enough to demonstrate satisfaction. Unfortunately, for certain key-
word queries (such as ::k), this can yield an answer that seems over-specific.

The adequacy or maximal information criteria captures preference for an-
swers that provide information related to desirable terms, in addition to manda-
tory information for required terms.

Example 1 (cont.) The query authors::, title:: returns three authors-title pairs,
and the query author::, title:: returns four author-title pairs. The latter query
answer is shown below.

<title>A Note on Decompositions of Relational Databases.</title>
<author position="00">Catriel Beeri</author>

<title>A Note on Decompositions of Relational Databases.</title>
<author position="01">Moshe Y. Vardi</author>

<title>Implementation of a Time Expert in a Data Base System.</title>
<author position="00">Ricky Overmyer</author>

<title>Implementation of a Time Expert in a Data Base System.</title>
<author position="01">Michael Stonebraker</author>

Example 3 (cont.) The first two articles given in Example 3 in Section 1 match
the query author:name:Dingle, article::.
Example 4 (cont.) The query lecturer::Mathematics results in:

<lecturer name="David Billington">
<teaches>Discrete Mathematics</teaches> </lecturer>

while the query lecturer:,:Mathematics results in three answers:

<course name="Discrete Mathematics">
<lecturer>David Billington</lecturer> </course>

<lecturer name="David Billington">
<teaches>Discrete Mathematics</teaches> </lecturer>

<lecturer>David Billington</lecturer>
<course>Discrete Mathematics</course>

3.6 Ranking Query Answers

In order to deal with document-centric applications of XML, we adapt the tra-
ditional TFIDF formula for weighting documents to rank order query answers,
somewhat along the lines of Cohen et al [4]. Specifically, we capture the relevance
of an XML subtree (containing text) to a query term (containing keyword). The
term frequency of a keyword k in a tree Tn, is defined as:

tf(k, Tn) =
count(k, Tn)

max{count(i, Tn) | i in words(Tn)}
,
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where count(k, Tn) is the number of times k is contained in the text/attribute
nodes of the tree Tn, and words(Tn) is the set of keywords contained in the
text/attribute nodes of the tree Tn. Similarly, the inverse document frequency
of a keyword k for a subtree with root label / type t is defined as:

idf(k, t) = log

(
1 +

|T (t)|
|{Tn ∈ T (t) | k in words(Tn)}|

)
,

where T (t) is the set of tree/attribute of type t .
In the context of queries involving elements and/or attributes and keywords,

the rank of a query answer (T1, T2, ..., Tm) for the query Q(t1, t2, ..., tm) is∑
{ tfidf(Ti, ti) | 1 ≤ i ≤ m }.

For ti = t : k ∨ ti = t : : k ∨ ti = : t : k, tfidf(Ti, ti) = tf(k, Ti) ∗ idf(k, t).
For ti = :: k, in the absence of context, the inverse document frequency of a
keyword k can be changed to:

idf(k) = log

(
1 +

|T |
|{Tn ∈ T | k in words(Tn)}|

)
,

where T is the set of text/attribute nodes.
This reduces to the traditional TFIDF approach for keyword search if a

collection of text documents are glued into a single XML document creating one
text node per text document. Observe also that the relative rank of the modified
XML subtrees does not change if the XML documents are refined by embedding
new element tags such as around named entities when named entity queries
are considered. Similarly, the relative ranks may be preserved when the XML
documents are augmented with attribute-value pairs that reflect the semantics
of a piece of text.

To implement this language, we need to build an index, mapping words to
paths (of subtree roots) in the XML document tree, to enable retrieval of sub-
trees. To compute interconnectedness, parent relationship is essential. Relative
to traditional IR, the size of the corresponding XML term-document matrix is
very large. Thus, instead of materializing all the TFIDF statistics for each sub-
tree, it may be computed using the corresponding statistics for the text/attribute
nodes contained in the subtree, in practice.

4 Conclusions and Future Work

The proposed XML query language has been designed with a straightforward
syntax to ease query formulation, incorporating not only text data content but
also metadata information in the source XML document. The query semantics
has been designed in a such a way that the answers provide relevant information
and are robust with respect to various manifestations of the same information in
terms of XML elements and XML attributes, to improve recall. In other words,
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the intuitive duality between the usages of elements and attributes has been
taken into account. Unfortunately, in relation to traditional IR, certain keyword
queries may yield answers that are over-specific from user’s perspective, necessi-
tating inclusion of metadata information in the query to control the granularity
of answers. One possible approach to overcome this problem is to specify what
kinds of subtrees (in terms of root labels) should be allowed in the answers.
Currently, we are implementing efficient techniques for indexing and semantic
search of XML documents.
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