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Abstract

Text search engines are inadequate for indexing and searching XML documents be-
cause they ignore metadata and aggregation structure implicit in the XML documents.
On the other hand, the query languages supported by specialized XML search engines
are very complex. In this paper, we present a simple yet flexible query language, and
develop its semantics to enable intuitively appealing extraction of relevant fragments
of information while simultaneously falling back on retrieval through plain text search
if necessary. Our approach combines and generalizes several available techniques to
obtain precise and coherent results.

Index Terms: Query Languages, XML/RDF, Information Search and Retrieval, Index-

ing and Search.

1 Introduction and Motivation

Popular search engines (such as Google, Yahoo!, MSN Search, etc) index document text

and retrieve documents efficiently in response to easy to write queries. Unfortunately, these

search engines suffer from at least two drawbacks: (a) They ignore most of the textual
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information available in the metadata / annotations / XML tags1. (b) They are oblivious to

the underlying aggregation structure implicit in the tree-view of XML documents. On the

other hand, specialized query languages and search engines for querying XML documents

require some sophistication on the part of the user to formulate queries [2, 3].

In this paper, we present with illustrative examples, design and implementation of a

keyword-based XML query language that is simple to use and that yields results that are

more meaningful than the corresponding text search would yield on an XML document.

Specifically, it facilitates exploitation of metadata to extract relevant fragments of informa-

tion without sacrificing the ability to fall back on retrieval through plain text search. This

work builds on the XML query language proposed in [4].

Consider the following motivating example of querying an heterogeneous XML document.

It describes titles and authors of publications. A publication can be a book or an article.

An edited book can contain chapters with separate titles and authors. An article’s author

may be missing.

Example 1

<publications>

<book>

<title> Modern Information Retrieval </title>

<author> Ricardo Baeza-Yates </author>

<author> Berthier Ribeiro-Neto </author>

<chapter>

<title> Digital Libraries </title>

<author> Edward A. Fox </author>

<author> Ohm Sornil </author>

</chapter>

</book>

<article>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine

</title>

<author> Sergey Brin </author>

<author> Lawrence Page </author>

</article>

<article>

1Note that extant search engines analyze only the content associated with the META-element, the TITLE-
element, etc., and information implicit in the text fonts and anchor text (link analysis), for relevance ranking
an HTML document [1].
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<title> An Algorithm for Suffix Stripping </title>

<author> M.F.Porter </author>

</article>

<article>

<title> Indexing by Latent Semantic Analysis </title>

</article>

</publications>

For the query that seeks author-title pairs, our semantics provides eight possible answers:

<title> Modern Information Retrieval </title>

<author> Ricardo Baeza-Yates </author>

<title> Modern Information Retrieval </title>

<author> Berthier Ribeiro-Neto </author>

<title> Digital Libraries </title>

<author> Edward A. Fox </author>

<title> Digital Libraries </title>

<author> Ohm Sornil </author>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<author> Sergey Brin </author>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<author> Lawrence Page </author>

<title> An Algorithm for Suffix Stripping </title>

<author> M.F.Porter </author>

<title> Indexing by Latent Semantic Analysis </title>

Observe that the author(s) and the title of the same entity (that is, article, book, chapter,

etc) are grouped together, while the author(s) and the title of different entities are not,

even when one entity is nested within the other (such as chapter within book). This is

accomplished by exploiting limited homogeneity in the data (for example, articles) and the

explicit structural similarity in the heterogeneous records (for example, book vs chapter vs

article). Note that author and title are implicitly optional. So, for the last answer, a response

for author is not mandatory. However, a richer query that requires both author and title to

be present is supported, to eliminate the following “author-less” answer.
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<title> Indexing by Latent Semantic Analysis </title>

The query language and its semantics also provides a mechanism to determine co-authors

when present, eliciting the following four query answers.

<author> Ricardo Baeza-Yates </author>

<author> Berthier Ribeiro-Neto </author>

<author> Edward A. Fox </author>

<author> Ohm Sornil </author>

<author> Sergey Brin </author>

<author> Lawrence Page </author>

<author> M. F. Porter </author>

Notice how the co-authors of a book are segregated from the co-authors of a chapter in

the book and from the co-authors of an article. A single author entity (that is, M. F. Porter

case) is permitted, but the “maximality” requirement eliminates the undesirable appearance

of other authors (such as Sergey Brin) as single author answers. Furthermore, the semantics

enables grouping of the title of a book and its “nested” chapter together when necessary.

<title> Modern Information Retrieval </title>

<title> Digital Libraries </title>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<title> An Algorithm for Suffix Stripping </title>

<title> Indexing by Latent Semantic Analysis </title>

The present work builds on the seminal work of Cohen et al [6] on XSEarch, a search

engine for XML documents. The query language for heterogeneous documents embodies the

simplicity of Google-like search interface (easing the task of query formulation) while ex-

ploiting the hierarchical structure of nested XML-elements to deliver precise2 and coherent

results (that is, containing semantically related pieces of information). The query language

accommodates XML-attributes and their string values, and incorporates precision improve-

ments suggested by Li et al [10] and recall improvements suggested by Guo et al [24] among

other things. We avoid discussing relevance ranking issues, to focus on the semantics of the

core query language. Specifically, the query semantics has the following additional benefits:

2Our use of the terms “precise” and “precision” is meant to capture the aspect of “compactness” or
“minimal size complete coverage” or “specificity”, and should not be confused with the standard IR term
“precision” meaning a fraction of retrieved documents (or XML fragments) that are relevant to the searcher.
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• Coherent query responses are generated not only for homogeneous XML documents

but also for heterogeneous XML documents. Our approach also provides a reasonable

interpretation of repeated query terms as explained in Section 3.6.

• XML documents with attributes can now be queried. Observe that, in the document

centric applications of XML, information bearing strings are in text nodes, while in

the data centric applications of XML, information bearing strings are associated with

attributes. For example, see Mondial database [5] in which a lot of factual data is

captured via attribute bindings.

• In spite of having general rules of thumb about when to use XML-elements and when to

use XML-attributes for expressing a piece of information [26], it is still quite common

to see authoring variations that mix the two, based on the idiosyncratic preferences

and views of the authors of web documents. (For example, see heterogeneous XML

documents in [8]). Treating the following patterns as “equivalent” can improve query

recall : <T A="s"/> and <T> <A> s </A> </T>.

• Semantic Web formalisms such as RDF, OWL, etc [27, 9, 28] build on XML and make

extensive use of attributes in XML serialization of RDF model [9]. In fact, the two

forms — <T A="s"/> and <T> <A> s </A> </T> — are equivalent in RDF. So a simple

XML Search Engine that can deal with attributes will be a welcome addition to the

toolset till customized search engines for RDF and OWL become commonplace.

• In many applications, XML documents may get progressively refined via a sequence of

annotaters. For instance, in an initial step, an entire name in a text may be recognized

and enclosed within <Name> ... </Name> tags, while in a subsequent step, it may be

refined by delimiting the first name and the last name using <FirstName> ... </FirstName>

and <LastName> ... </LastName> tags respectively. Our formalization attempts to

be robust with respect to such refinements of a document.

In Section 2, we present other related works. In Section 3, we discuss the details of

the proposed XML query language, develop its semantics, and illustrate its use through

examples. Specifically, we present a novel approach to obtain precise and coherent results.

In Section 4, we provide algorithmic details of a prototype implementation. In Section 5, we

conclude with suggestions for future work.
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2 Other Related Works

Information retrieval (IR) is finding material (usually documents) of an unstructured nature

(usually text) that satisfy an information need from within large collections (usually stored

on computers) [12]. In contrast, data retrieval is finding answers of a structured nature that

satisfy a well-defined query from within large structured collections. Typically, IR involves

issues such as quality of results, partial matching, relevance-based ranking of results, indexing

and retrieval of unstructured data, etc. In contrast, DR involves issues such as efficiency of

result computation, exact matching, no results or too many results, indexing and retrieval of

structured data, etc. IR techniques are usually justified on probabilistic grounds, and were

initially used in library applications. In contrast, DR techniques are usually formalized using

algebra/logic, and were initially used in accounting applications.

XML query languages can be broadly classified into two groups: (a) Structure-based

query languages (inspired by the database community and data-centric applications) and

(b) Keyword-based query languages (inspired by the information retrieval community and

the document-centric applications). The former group of languages can be further classified

into: (a.1) Navigational languages that use path expressions to refer to XML fragments (for

example, XQL [11], Quilt [13], XQuery [3], etc) and (a.2) Positional languages that use XML

patterns to refer to XML fragments (for example, XML-QL [14], Xcerpt [15], etc). Bailey

et al [16] provide an up-to-date survey of structure-based (non-IR) XML query languages,

and we urge interested readers to consult their work for details. They also discuss the

design space for the XML query languages and compare the various languages on the basis

of their support for: (i) selection and extraction of XML data, (ii) restructuring of XML

data, and (iii) aggregation, combination, and inferences from XML data. In fact, XQuery [3]

has become the de facto standard for structure-based query language because it is flexible,

expressive, reliable, and full, with wide support from both industry and academia.

Florescu et al [8] present the design and implementation of a keyword-based extension

of XML-QL language (using contains predicate) that supports querying of XML documents

based on their structure and their textual content. This facilitates searching of an XML

document whose structure is only partially known, or searching heterogenous XML document

collections. The implementation uses an off-the-shelf relational database system.

In XIRCL, Fuhr and Grojohann [17] incorporate different answer granularity, content-

based searching, robust query matching (by equating use of an element or an attribute for

expressing the same content), and IR-related features such as relevance ranking using prob-

abilistic models. Meyer et al [18] describe a search engine architecture and implementation
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based on XIRCL.

Carmel et al [19] use XML fragments as queries instead of inventing a new XML query

language, and extend the traditional vector space model for XML collections. The weight

associated with an individual term depends on its context, and the ranking mechanism is

used to deal with imperfect matches and high recall.

In comparison to all these approaches, our query language is less expressive.

Schlieder and Meuss [20] reduce XML querying to tree matching by simulating attributes

via elements and strings via word-labelled node sequences, and adapt traditional IR tech-

niques for document ranking. Our approach resembles this work in spirit, but again the

query language is simpler. For example, queries involving an element name and a keyword

has a different interpretation in our approach that is robust with respect to the level of

annotations.

In contrast with approaches so far, Theobald and Weikum [21] focus on heterogenous

documents, path-based queries and semantic-similarity search conditions. Grabs and Schek

[22] try to capture the intuition that the content that is more distant in a document tree is

less important than the one that is close to the context node while determining term weights

and relevance. On the other hand, we want to preserve the semantic impact of a piece of

text irrespective of the level of annotations surrounding it.

Li et al [10] propose an extension to XQuery that marries the precise query formulation

abilities of XQuery with the convenience and intuitive semantics of keyword-based XML

query language. Specifically, they show how their semantics is robust with respect to vari-

ations in XML Schema, and how it can be efficiently implemented. Our approach lacks

the precision that full XQuery exhibits, but it can incorporate improvements in precision

for keyword-based query languages as suggested by Li et al [10]. In our opinion, a sim-

ple keyword-based query language that facilitates “human-in-the-loop” for query refinement

seems appropriate for quick browsing and searching of XML documents, compared with

the effort required for query formulation in XQuery. However, XQuery-like languages are

indispensable when dealing with large datasets and/or expressive queries.

Guo et al [24] describe a novel scheme for ranking keyword-based search results over

hyperlinked XML documents that takes into account (i) the nested structure of XML docu-

ments, for result specificity, (ii) hyperlinks structure in the form of IDREFs and XLinks, for

“pageranking”, and (iii) proximity among keywords with respect to distance between them

and distance to an ancestor, for improving precision. In contrast, our approach ignores hy-

perlinks in XML documents. Similarly to Guo et al’s approach, our “completeness” criteria

computes all possible answers as explained in Section 3.5.

7



Cohen et al [7] provide a comprehensive framework for developing interconnection se-

mantics for keyword-based querying of XML documents with IDREFs, and relevant compu-

tational complexity results for verifying an answer to a query or enumerating all answers to

a query. The two definitions of interconnectedness we combine, and the notion of complete-

ness we advocate, can individually be represented in their framework, among various other

choices. However, the repeated-term queries and their proposed semantics (e.g., queries for

determining co-authors) cannot be captured straightforwardly via the automatically gener-

ated uniquely labelled patterns of Cohen et al [7].

Catania et al [23] provide a nice review of the indexing schemes employed for query-

ing XML documents. In terms of their classification, our implementation uses “Structural

Join Indexing” because it is based on Apache Lucene APIs [30], a high-performance Java

infrastructure for building fulltext search engine.

3 Query Language

The standard search engine query is a list of optionally signed keywords. For querying

XML documents, Cohen et al [6] allow users to specify labels and keyword-label combina-

tions that must or may appear in a satisfying XML document fragment. Our queries allow

keywords, element names, and attribute names, optionally with a plus (“+”) sign. Intu-

itively, element/attribute names relate to type information/metadata, while keywords relate

to concrete values/data3.

3.1 Query Syntax

Definition 1 A search term has one of the following forms: e:a:k, e:a:, :a:k, e::k, e::, :a:, ::k,

l:k, l: and :k, where e is an element name, a is an attribute name, l is an element/attribute

name, and k is a keyword (string). Furthermore, l:k is interpreted as l::k or :l:k, l: is

interpreted as l:: or :l:, and :k is interpreted as ::k.

Informally, ‘:’ corresponds to with attribute or with value, and ‘::’ corresponds to nested

to any depth.

3Word adjacency information can be captured using phrases in the standard way, that is, delimited by
double quotes. However, there is no explicit support for specifying proximity information or “window of
separation” between two words, in the query language.
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Definition 2 A query is a sequence of optionally signed search terms. Signed search terms

must be present in the retrieved results, while unsigned search terms should be present in the

retrieved results.

That is, unsigned search terms must be present if satisfying information is available. Oth-

erwise, it can be absent. The rationale is to get maximal information from the available

data corresponding to unsigned search terms. This interpretation is formally captured in

Definition 5 of query answer candidate given in Section 3.5.

Note that ‘,’ is used to separate terms in a sequence.

3.2 XML Datamodel

Conceptually, an XML document is modelled as an ordered tree [29]. For our purposes,

XML tree contains the following types of nodes4:

• Root node: The root node is the root of the tree. The element node for the document

element is a child of the root node.

• Element node: There is an element node for every element in the document. The

children of an element node are the element nodes and the text nodes (for its content).

• Text node: Character data is grouped into text nodes.

• Attribute node: An element node can have an associated set of attribute nodes; the

element is the parent of each of these attribute nodes. Each attribute node has a

string-value.

We ignore namespace nodes, processing instruction nodes, and comment nodes, and the

ability to create additional internal links between tree nodes5.

4In this paper, a subtree is always rooted at an element node. The root node associated with a subtree
of a tree (resp. a subelement of an element) is a descendant of the root node associated with the tree (resp.
element).

5From the perspective of specifying the query semantics, there is no harm in allowing internal links. These
have been excluded here only because our implementation prematurely committed to tree structure, thereby
requiring some duplication for testing with DAGs generated by IDREFs. An alternative implementation
allowing multiple parents can enable querying of more general XML documents.
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3.3 Single Search Term Satisfaction

We specify when a search term is satisfied by an XML subtree. In contrast to Cohen’s

work, our approach abstracts from differences in the representation of a piece of information

either as an attribute-value pair of an element or as the element’s subelement, enclosing the

value text (for example, <T A="s"/> and <T> <A> s </A> </T>). Additionally, the notion

of satisfaction is robust with respect to further refinements through semantic annotations

(for example, <T> s </T> and <T> <A> s </A> </T> satisfy the query T::s).

Observe that a text node / attribute value can be defined to contain a keyword in several

different ways. Some of the alternative definitions for when a keyword is contained in a text

node / attribute value are: (i) if the keyword is a prefix of a word in the text node, or (ii) the

keyword is identical to the string in the text node, or (iii) the keyword belongs to the text

node viewed as a bag of words, or (iv) the keyword matches a word in the text node after

case conversion, stemming, and synonym expansion, etc. Furthermore, in order to enable

equivalence between attribute-value form and subelement-text node form discussed earlier,

we need to process the string in the attribute’s value and the text in the corresponding

text node similarly. Specifically, interpretation (i) seems appropriate for data-centric XML

where attribute values may be treated as atomic, while interpretation (ii) and (iii) seem

appropriate for document-centric XML where the attribute values may be English phrases.

We consciously avoid resolving this debate here and focus on the essentials.

Definition 3 We define when a search term is satisfied by an XML subtree (by cases) as

follows.

• The search term e:a:k is satisfied by a tree containing a subtree with the top element

e that is associated with the attribute a with value containing k , or a subelement a

with descendant text node containing k .

• The search term e:a: is satisfied by a tree containing a subtree with the top element e

that is associated with the attribute a, or subelement a.

• The search term :a:k is satisfied by a tree containing a subtree with a top element

that is associated with the attribute a with value containing k , or a subelement a with

descendant text node containing k .

• The search term e::k is satisfied by a tree containing a subtree with the top element e

and that has

– an attribute associated with the value containing k , or
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– a subelement with an associated attribute value containing k , or

– a descendant text node containing k .

• The search term e:: is satisfied by a tree containing a subtree with the top element

name e.

• The search term :a: is satisfied by a tree containing a subtree with a top element that

is associated with the attribute a or a subelement a.

• The search term ::k is satisfied by a tree containing

– a subtree with a top element that is associated with an attribute value containing

k , or

– the descendant text node containing k .

Informally, a search term query is satisfied by an XML tree if the tree contains query

relevant information. Observe that a query can use detailed knowledge of XML document

structure (for example, via e:a:k etc), or have the flexiblity to express textual search (for

example, via ::k , etc).

The above definition makes explicit all possible cases that arise. Furthermore, it captures

(i) equivalence between attribute-value pair and its rendition as entity-text pair, and (ii)

equivalence among XML trees obtained though refinement via additional annotations.

We illustrate the notion of satisfaction through concrete examples, setting the stage for

defining “most preferred” answers.

Example 2 Consider the following heterogeneous XML document [8].

<document>

<article id="1">

<author><name>Adam Dingle</name></author>

<author><name>Peter Sturmh</name></author>

<author><name>Li Zhang</name></author>

<title>Analysis and Characterization of Large-Scale Web Server

Access Patterns and Performance

</title>

<year>1999</year>

<booktitle>World Wide Web Journal</booktitle>

</article>
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<article id="2" year="1999">

<author name="A. Dingle" ></author>

<author name="E. Levy" ></author>

<author name="J. Song" ></author>

<author name="D. Dias" ></author>

<title>Design and Performance of a Web Server Accelerator</title>

<booktitle> Proceedings of IEEE INFOCOM </booktitle>

</article>

<article id="3">

@inproceedings{IMN97,

author="Adam Dingle and Ed MacNair and Thao Nguyen",

title="An Analysis of Web Server Performance",

booktitle="Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM)",

year=1999}

</article>

</document>

It contains information about articles expressed in three different ways. A robust search

strategy should ideally deliver all the three records when articles by “Dingle” are sought.

Thus, all the three articles satisfy the search term article::Dingle. These trees also

satisfy the search terms :author:, title::, ::Dingle, etc. Furthermore, the search terms

::Dingle and author:: are satisfied by the following three fragments, while the search

term author::Dingle eliminates the last one (as both author and Dingle belong to the

text content) and the search term :author:dingle eliminates the last two. The equivalence

between attribute-value pair and its translation via entity-text pair is respected.

<author><name>Adam Dingle</name></author>

<author name="A. Dingle" ></author>

<article id="3">

@inproceedings{IMN97,

author="Adam Dingle and Ed MacNair and Thao Nguyen",

title="An Analysis of Web Server Performance",

booktitle="Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM)", year=1999}

</article>
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3.4 Query Satisfaction

In order for a collection of XML subtrees to satisfy a query, each required (resp. optional)

search term in the query must (resp. should) be satisfied by some subtree in the collection,

and furthermore, all the subtrees in the collection must be meaningfully related. To mate-

rialize the absence of a satisfying tree for an optional search term, the null value has been

introduced. The notion of satisfaction can be formalized via subtree sequences [6].

Definition 4 A query Q(t1, t2, ..., tm) is satisfied by a sequence of subtrees and null values

(T1, T2, ..., Tm), if

• For all 1 ≤ i ≤ m: if ti is a signed/plus/required term, then Ti �= null.

• For all 1 ≤ i ≤ m: if Ti �= null, then ti is satisfied by Ti.

We also say that the set { Ti|1 ≤ i ≤ m ∧ Ti �= null } satisfies Q .

Note that, as it stands, the “,” operator implicitly captures the boolean connective

“AND”, while unsigned search term approximates the boolean connective “OR”. Further-

more, it is straightforward to extend the query language to support the boolean connectives

“AND” and “OR” with the desired semantics. We have made this fact explicit in the paper

now.

3.5 Query Answer

Informally, the definition of query answer tries to capture the intuitive notions of precision,

completeness, adequacy, and coherence of extracted results.

Tentatively, a query answer candidate for a query Q(t1, t2, ..., tm) with respect to an XML

tree T is a collection of XML subtrees U of T such that U satisfies Q, and furthermore, there

does not exist another (distinct) satisfying collection of XML subtrees P that is preferred to

U .

Consider the subtree sequences (P1, P2, ..., Pm) and (U1, U2, ..., Um) such that U = {Ui |
1 ≤ i ≤ m ∧ Ui �= null} and P = {Pi | 1 ≤ i ≤ m ∧ Pi �= null}.

Tentatively, P is preferred to U if and only if

1. (Precision) ∀i : ti is a term ⇒
(Pi = Ui) ∨ (Pi is a subtree of Ui), or

2. (Adequacy[Maximal Information])

∀i : ti is an unsigned term ⇒ (Pi = Ui) ∨ (Pi �= null).
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Note that P is preferred to P, according to the above definition.

The precision criteria captures preference for the smallest subtree that is necessary to

demonstrate satisfaction. Unfortunately, for certain keyword queries (such as ::k) this can

yield an answer that seems overly specific.

Example 3 For the query +::pWord, +::qWord and the XML tree:

<A> pWord <B> pWord qWord </B> pWord qWord </A>,

the satisfying XML subtree { <B> pWord qWord </B> } is preferred over

{ <A> pWord <B> pWord qWord </B> pWord qWord </A> } because the former is

embeddable in the latter. However, note that the second tree has “hits” independent of

those in the first subtree. We overcome this limitation shortly.

Example 4 There is some asymmetry in the treatment of elements and attributes here. For

the query +::pWord, +::qWord and the XML tree: <A> <B> pWord qWord </B> </A>,

the set { <B> pWord qWord </B> } is the query answer candidate, but not

{ <A> <B> pWord qWord </B> </A> },

while, for the XML tree <A B="pWord qWord"> </A>, the set { <A B="pWord qWord"> </A> }

is the query answer candidate.

The adequacy or maximal information criteria captures preference for answers that pro-

vide information related to desirable terms, in addition to mandatory information for required

terms.

Example 5 For the query ::pWord and the XML tree: <A> <B> pWord qWord </B> </A>,

the satisfying XML subtree { <B> pWord qWord </B> } is preferred over the empty set { },

due to adequacy requirement. However, the query ::rWord and the same XML tree yields

the empty set { } as a viable query answer candidate.

In order to remedy the problem alluded to in Example 3, we define query answer candidate

as follows:

Definition 5 A query answer candidate for a query Q(t1, t2, ..., tm) with respect to an XML

tree T is a collection of XML subtrees U of T such that U satisfies Q, and

1. (Preference) there does not exist another (distinct) satisfying collection of XML subtrees

P such that

(a) (Precision) ∀i : ti is a term ⇒ (Pi is a subtree of Ui), OR

(b) (Adequacy[Maximal Information])

∀i : ti is an unsigned term ⇒ (Pi = Ui) ∨ (Pi �= null).
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OR

2. (Completeness)

∃i : ti is a term, AND ∃ERi :

( (U1, ..., Ui, ...Um) − ERi is a query answer candidate Q w.r.t. T − ERi ) ),

where ERi = {Ri | Ri is a subtree of Ui ∧
(R1, ..., Ri, ..., Rm) is a query answer candidate for Q}.

Note that ((T1, ..., Tm)−STs) denotes the subtree sequence obtained by deleting subtrees

in ST s from the subtrees Ti’s.

Informally, completeness criteria6 permits “non-minimal” query answer candidates that

contain subtrees (satisfying some terms) not covered by other “smaller” query answer can-

didates. (R1, ..., Ri, ..., Rm) in the definition ranges over the latter, while the construction

( (U1, ..., Ui, ...Um) − ERi ) tries to uncover the former. (See examples below for further

clarification.) Recall also that for the subtree sequence (U1, U2, ..., Um), the corresponding

set of subtrees is U = {Ui | 1 ≤ i ≤ m ∧ Ui �= null}.
In what follows, we use the set and the sequence representations interchangeably for

convenience, whenever it is clear from the context which is meant.

The precision and completeness criteria captures preference for the smallest fragment

of a subtree that satisfies the query while simultaneously accommodating every possible

occurrence of an answer. Specifically, it allows non-overlapping answers in a tree that also

contains subtrees with other answers. To illustrate the subtleness involved, let us analyze

the examples shown in Figure 1.

Example 6 Consider the query ::pWord, ::qWord and the XML tree:

<A> pWord qWord <B> pWord qWord </B> <C> rWord qWord pWord </C> </A>,

and the three XML subtrees given below:

Trees-1: { <B> pWord qWord </B> }

Trees-2: { <C> rWord qWord pWord </C> }

Trees-3: { <A> pWord qWord <B> pWord qWord </B> <C> rWord qWord pWord </C> </A> }

According to tentative definition, (Trees-1) and (Trees-2) are regarded as query answer

candidates, while (Trees-3) is not, because (Trees-1) and (Trees-2) are embedded in (3).

However, according to Definition 5, all the three subtrees (Trees-1), (Trees-2), and (Trees-3)

6Ironically, the declarative specification of the completeness criteria seems complex. However, its purpose,
as illustrated through the example, is clear and its implementation, as discussed later, is clean.
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Figure 1: Illustration of Precision and Completeness

are regarded as query answer candidates. Specifically, (Trees-3) contains an occurrence of

pWord qWord that is distinct from the ones found in (Trees-1) and (Trees-2), and hence been

included as query answer candidate.

Observe also that, for certain queries, the precision criteria can yield an answer that

seems overly specific. For example, for the query B::pWord and the XML tree:

<A> <B> pWord </B> </A>, the answer is: <B> pWord </B>

Definition 6 (Coherence) A query answer for a query Q(t1, t2, ..., tm) with respect to an

XML tree T is a collection of XML subtrees U of T such that U is a query answer candidate

and U is interconnected.

3.6 Coherence via Interconnectedness

Cohen et al [6] and Li et al [10] present two different definitions of interconnectedness.

Li et al’s definition is more stringent than Cohen et al’s definition, and seems to be a

better fit for heterogeneous or Schema-free XML documents. The distinction between these

two definitions is analogous to the distinction between name equivalence and structural

equivalence of types in programming languages [25]. Two variables are said to be name

(type) equivalent if the two variables have been explicitly declared as having the same type

name. As explained below, Cohen et al [6] exploit the homogeneity in the element names

in an XML document. Two variables are said to be structure (type) equivalent if the two
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variables (recursively) contain fields of the same structure type. As explained below, Li et

al [10] exploit the structural similarity to deal with heterogeneity. Our approach combines

and generalizes these two proposals to capture coherence implicit in an XML document.

Recall that a node c is an ancestor of node a in a tree T if node c is on the (directed)

path from node a to the root of the tree T . A node c is a common ancestor of nodes a and

b in a tree T if node c is an ancestor of both nodes a and b in the tree T . A node c is a least

common ancestor of nodes a and b in a tree T if node c is a common ancestor of nodes a

and b in the tree T , and further, any common ancestor of nodes a and b in a tree T is an

ancestor of c.

Definition 7 [Cohen et al:] Two subtrees Ta and Tb are said to be interconnected, if the

path from their roots to the lowest common ancestor in the tree does not contain two distinct

nodes with the same element label, or the only distinct nodes with the same element label are

these roots.

The intuition behind this notion of interconnectedness is that if the common ancestor

can be viewed as a collection containing multiple entities of the same type, as evidenced by

the same node label, then interconnected nodes belong to a subtree that can be associated

with a single physical entity. (See Figure 2(A).)

Definition 8 [Li et al:] Two subtrees Ta and Tb are said to be interconnected, if the path

from Ta’s root to their lowest common ancestor in the tree does not contain another node

that is the lowest common ancestor of Ta and a distinct subtree T ′
b, where T ′

b has the same

root element label as Tb.

The intuition behind this notion of interconnectedness is that if the common ancestor can

be viewed as a collection containing multiple entities with similar structure, as evidenced by

subtrees containing similarly labelled descendant nodes, then interconnected nodes belong

to a subtree that can be associated with a single physical entity. In particular, the formal

definition of interconnectedness specifies what constitutes an “overriding” association (that

is, Ta and T ′
b, or T ′

a and Tb) in a subtree that can eliminate “erroneous” association (that is,

Ta and Tb) in a larger tree. (See Figure 2(B).)

For example, consider Figure 2. In (A), according to both Cohen et al’s notion and

Li et al’s notion, nodes in sets {Title1, Author1} and {Title2, Author2} are intercon-

nected, while the nodes in sets {Title1, Author2} and {Title2, Author1} are not in-

terconnected. However, in (B), according to Cohen et al’s notion, nodes in sets {Title3,
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Author3}, {Title4, Author4}, {Title3, Author4} and {Title4, Author3} are all inter-

connected, while, according to Li et al’s notion, only nodes in sets {Title3, Author3}
and {Title4, Author4} are interconnected, but nodes in sets {Title3, Author4} and

{Title4, Author3} are not interconnected. In other words, Li et al’s approach yields intu-

itively better answers than Cohen et al’s approach for the example shown in Figure 2(B).

It is possible to get “the best of both the worlds” by combining and generalizing Defini-

tion 7 and Definition 8 as follows:

Definition 9 Two subtrees Ta and Tb are said to be interconnected: (i) if the path from

their roots to the lowest common ancestor in the tree does not contain two distinct nodes

with the same element label, or the only distinct nodes with the same element label are these

roots, or, (ii) if the path from Ta’s root to their lowest common ancestor in the tree does not

contain another node that is the lowest common ancestor of Ta and a distinct subtree T ′
b,

where T ′
b has the same root element label as Tb.

Specifically, the above notion of interconnectedness allows us to use similar element labels

to identify different entities of the same type even when the structure of the entities do not

coincide, for example, due to incomplete information or the presence of optional features ,

while falling back on the structural information to glean coherence when element labels alone

are inadequate. See Example 9.
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In order to appreciate the subtleness implicit in the definition of interconnectedness given

in Definition 9, consider the heterogeneous XML document of Example 1.

Example 7 For the query author::, title::, the eight possible query answers are:

<title> Modern Information Retrieval </title>

<author> Ricardo Baeza-Yates </author>

<title> Modern Information Retrieval </title>

<author> Berthier Ribeiro-Neto </author>

<title> Digital Libraries </title>

<author> Edward A. Fox </author>

<title> Digital Libraries </title>

<author> Ohm Sornil </author>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<author> Sergey Brin </author>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<author> Lawrence Page </author>

<title> An Algorithm for Suffix Stripping </title>

<author> M.F.Porter </author>

<title> Indexing by Latent Semantic Analysis </title>

Observe how the author(s) and the title of the same “real-world” entities cohere together

including the case of nested entities. This is due to the fact that we use homogeneity (for

example, articles) and the structural similarity (for example, book vs chapter vs article).

The query terms are optional, and so, for the last answer, a binding for author:: is not

necesssary. On the other hand, for the query +author::, +title::, there are only seven

possible query answers.

Example 8 To determine the co-authors, one can form the repeated term query author::,

author::, eliciting 4 query answers.

<author> Ricardo Baeza-Yates </author>

<author> Berthier Ribeiro-Neto </author>

<author> Edward A. Fox </author>

<author> Ohm Sornil </author>
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<author> Sergey Brin </author>

<author> Lawrence Page </author>

<author> M. F. Porter </author>

The answers do not change for the query +author::, +author:: or +author::, +author::,

+author::. Specifically, the single author tree (that is, M. F. Porter case) is regarded as

satisfying the query, and the query language is not capable of expressing its elimination.

However, maximal information requirement does eliminate other authors (such as Sergey

Brin) from appearing as single author answers.

Example 9 For the queries +title::, +title:: and title::, title::, we get 4 query

answers shown below. Note how the titles of the book and the chapter are grouped together.

<title> Modern Information Retrieval </title>

<title> Digital Libraries </title>

<title>The Anatomy of a Large-Scale Hypertextual Web Search Engine </title>

<title> An Algorithm for Suffix Stripping </title>

<title> Indexing by Latent Semantic Analysis </title>

Similarly, the query +author::, +title::, +author:: yields four answers: one book,

one chapter, and only two articles.

Example 10 Note that for the query author::, title::, and the following heterogeneous

XML document (where the title of the book is missing and the authors of the article are

missing):

<publications>

<book>

<author> Ricardo Baeza-Yates </author>

<author> Berthier Ribeiro-Neto </author>

</book>

<article>

<title> Indexing by Latent Semantic Analysis </title>

</article>

</publications>

we do get the “unfortunate” pairings
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<author> Ricardo Baeza-Yates </author>

<title> Indexing by Latent Semantic Analysis </title>

<author> Berthier Ribeiro-Neto </author>

<title> Indexing by Latent Semantic Analysis </title>

Even though these query answers do not model “reality” (because the book’s authors are

paired with the title of an unrelated article), these pairings are still considered reasonable

as there is nothing in the data to imply incoherence. For instance, unless a background

ontology provides information that book and article are similar (that is, they are two

kinds of publications), there is no way to determine that book and article elements delimit

information about two separate real-world entities.

3.6.1 Computing Interconnectnedness for multi-term query

For m ≥ 2 : the sequence of subtrees (U1, U2, . . . , Um) are interconnected if and only if (

∀i, j ∈ [1, 2, . . . , m] : Ui and Uj are interconnected ).

4 Algorithmic and Implementation Details

We describe the algorithmic details of XML dataset indexing and query answering, and

our prototype based on the open source text indexing and search API, Lucene [30]. The

purpose of providing these details is to show that the semantics can be implemented in a

straightforward manner. In fact, the prototype enabled us to analyze the subtleties associated

with the query semantics and the expressive power of the query language. For ease of

prototyping, we mapped the problem of XML indexing and querying to one of text indexing

and querying supported by Lucene. To obtain significant improvements in performance, we

should replace Lucene with custom XML indexing and search system built from scratch.

4.1 Indexing

XML documents are indexed to enable efficient search for query answers. The answers are

eventually a set of XML fragments. Each XML fragment of an XML document can be

represented using two pieces of information: the name of the XML document, and the path

from the root of the entire XML document to the element node that is the root of the

XML fragment. Thus, the indexing data structure should map each “word” to a list of

pairs (XML-document-filename, set-of-access-paths-from-document-root). Observe
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that this is analogous to a posting list for a keyword which contains (text-filename,

set-of-positions-of-hits-in-text) that captures positional indexing in traditional IR.

The names of the nodes on the access path from the document root to a node is also the

sequence of names of the ancestor elements of the node along with their locations with

respect to their siblings. For concreteness, in Example 1, the location of the hit for the

query author::Sornil is the XPath /publications[1]/book[1]/chapter[1]/author[2]

and for the query title::Latent is the XPath /publications[1]/article[3]/title[1].

Assume that ‘{...}’ denotes a set, and a position of a node of an XML document captures

the access path from the document root to the node (similarly to XPath). Also, let us call

the form of the word that is indexed as the significant keyword . This form depends on the

notion of containment of a keyword in a text node or an attribute value. For example, it

can be an entire word, or a prefix of a word, or a non-stop word, or a stem. Then:

• Each element e’s occurrence in the document f at the position pe is encoded in the

mapping of the element name map(e) as {..., (f, {..., pe, ...})}.
• Each attribute a’s occurrence in the document f , with its parent element located at the

position pe, is encoded in the mapping of the attribute name map(a) as {..., (f, {..., pe, ...})}.
• Each significant keyword sk occurring in an attribute value av in the document f ,

with the associated attribute located at the position pa, is encoded in the mapping

of the stem map(sk) as {..., (f, {..., pa, ...})}. The position retains information about

the attribute name to enable distinguishing between values associated with different

attributes.

• Each significant keyword sk occurring in a text node t in the document f , with the

parent element located at the position pe, is encoded in the mapping of the stem

map(sk) as {..., (f, {..., pe, ...})}.
Note that the mappings of the elements, the attributes, the attribute values, and the

keywords should be stored separately because the query language makes a distinction be-

tween them. These mappings can be implemented using techniques that differ in terms of

the space-time trade-offs they make, such as by using hash tables, or by using a full-text

indexing and search engine infrastructure.

4.2 Precise and Complete Query Satisfaction

To specify precise and complete answers to a query term, we consider the most general query

form +e : a : k. (In what follows, we use k also to stand for significant keyword.)
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Step 1: Determine map(e), map(a), and map(k). Recall that map( ) yields a list of pairs,

where each pair is of the form (filename, set-of-access-paths).

Step 2: From the cross-product map(e) x map(a) x map(k), (i) filter triples that belong to

the same XML fragment by checking that each component of the triple originates from

the same file, and the access paths for the three components are in (proper) prefix re-

lationship, and (ii) return the pair (filename, set-of-satisfying-access-paths)

associated with the elements of the filtered triples, where the satisfying access path

yields the tree that contains element e, attribute a, and keyword k . The path will

eventually be used to determine XML fragments.

The specifications for the other queries are similar (in fact a specialization of the above

code). Recall that, for the query +T:A:, the XML documents

<T A="s"/> and <T> <A> s </A> </T>

eventually return the XML fragments

<T A="s"/> and <T> <A> s </A> </T> respectively,

thus behaving similarly. On the other hand, for the query :A:, the XML documents

<T A="s"/> and <T> <A> s </A> </T> eventually return the XML fragments <T A="s"/>

and <A> s </A> respectively, which are not the same. The latter difference arises because

the smallest returned subtree must be rooted at an element.

Optional query terms can succeed even if there are no non-trivial satisfying XML subtrees,

while required query terms will fail under similar circumstances.

4.3 Query Answers : Multiple Query Terms and the Intercon-

nected Relationship

To specify query answers to conjoined queries, we begin with two query terms case. We also

provide as comments additional code to ensure that optional query terms will succeed with

non-trivial subtree bindings when such bindings exist, and succeed with no bindings when

such bindings do not exist. This is to ensure that adequacy/maximal information criteria

is met by the query answer. Recall that the query result associated with a query term so

far is a set of pairs, where each pair is of the form (filename, element-access-path). To

determine the XML fragments that satisfy the two terms s and t, we compute the common

prefix of the access-path components of the result (in the above code) for s and t with the

same filename component, and check for interconnectness, to ensure that the two terms are

satisfied by an XML fragment corresponding to a single entity. (The common prefix is the
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access path to the lowest common ancestor of the roots of the subtrees (XML fragments)

satisfying s and t.) For example, to implement Cohen et al’s definition, we ensure that the

two non-overlapping parts of the access paths have disjoint labels.

In what follows, common-prefix(p,q) yields the prefix string common to paths p and q

(from the root of the same XML tree) and remainder-suffix(p,q) yields a string r such

that concatenation(q,r) = p. is-label-disjoint(aps,apt) takes two access paths, and

verifies that the labels on the nodes (with the exception of the last nodes) of the two paths

are disjoint. For instance, assuming that the paths are represented as alternating sequence

of node labels (n’s, m’s) and their “sibling” positions (a’s, b’s),

is-label-disjoint( [<m1,a1>,<m2,a2>,...,<mj,aj>,<m,a>],

[<n1,b1>,<n2,b2>,...,<ni,bi>,<n,b>] ) if and only if

{m1, m2, ..., mj} is disjoint from {n1, n2, ..., ni}.

Note that the terminal nodes on the two paths can have the same label (that is, n = m) and

be part of the same “higher-level” entity.

The following pseudo-code combines and generalizes Cohen et al’s definition and Li et

al’s definition of interconnectedness. (The pseudo-code is explicitly dealing only with re-

quired query terms. The commented lines can be used for handling optional query terms.

The pairing-found predicate ensures that an optional query term can be satisfied without

generating any bindings for it, if no bindings exist for it.)

query-answer := {};

//* foreach stp in union(result(s),result(t))

//* pairing-found(stp) := false;

foreach (sp,tp) in result(s) x result(t)

begin

apsp := access-path(sp);

aptp := access-path(tp);

if (filename(sp) = filename(tp)) and

is-label-disjoint(remainder-suffix(apsp,common-prefix(apsp,aptp)),

remainder-suffix(aptp,common-prefix(apsp,aptp)))

// Cohen et al’s constraint above

then

// Li et al’s constraint below
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overriden := false;

foreach sp0 in result(s)

begin

apsp0 := access-path(sp0);

if ( is-prefix( common-prefix(apsp,aptp), common-prefix(apsp0,aptp) )

and (apsp0 != aptp) )

then begin overriden := true;

goto FINAL;

end;

end;

foreach tp0 in result(t)

begin

aptp0 := access-path(tp0);

if ( is-prefix( common-prefix(apsp,aptp), common-prefix(apsp,aptp0) )

and (apsp != aptp0) )

then begin overriden := true;

goto FINAL;

end;

end;

FINAL:

//* pairing-found(sp) := true;

//* pairing-found(tp) := true;

query-answer += if overridden

then {}

else {( filename(sp), { apsp, aptp } ) )};

end; // if

end; // foreach

//* foreach sp in result(s)

//* if not pairing-found(sp) and optional(t)

//* query-answer += {sp};

//* foreach tp in result(t)

//* if not pairing-found(tp) and optional(s)

//* query-answer += {tp};

Note that, for the conjoined query +P:N:V, N:V, the XML document
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<Q A="B"> <P N="V"> <N> V </N> </P> </Q>

yields as the query answer the XML fragment

<P N="V"> <N> V </N> </P>.

4.3.1 Multiple Query Terms

We can modularize the above code as a predicate: is interconnected(s term, Us tree, t term, Ut tree),

where is interconnected takes two terms and a pair of corresponding satisfying trees as input,

and determines if the two subtrees are interconnected.

The query answer for a query containing only required terms can be computed as follows,

where ti’s are the terms, ui’s are the corresponding XML trees, and ∧ is the logical-and

operation:

query answer(t1) = results(t1)

query answer(t1, . . . , tn) =

{ (U1, . . . , Un) | (U1, . . . , Un) ∈ results(t1) × . . . × results(tn)

∧ ∧n
i=1 ∧n

j=i+1 is interconnected(ti, Ui, tj , Uj) }
The same code can be used to compute “tentative” query answers (not guaranteed to be

maximal information-wise or without duplicates) for a query containing optional terms by

making (a) results(ti) contain null if ti is optional and (b) is interconnected return true

when one of the tree arguments is null. Tentative query answers can be compacted to obtain

query answers (which contain only maximal information tree sequences without duplicates),

by removing tree sequences that are included in the others.

4.4 Output

The XML fragment can be displayed by providing its coordinates in terms of the pair

(fileName, access-path-from-root), and also by extracting the text from the XML doc-

ument using an “XPath processor”. In fact, both these can be displayed side by side. It is

unreasonable space-wise to explicitly store the entire “XPath to XML fragment” mapping in

comparison to determining the necessary XML fragment at query-time. However, the over-

all performance can be improved if the query frequency is skewed and frequently occurring

access paths to an XML fragment can be cached. Furthermore, the access path can itself

be manipulated by the user to navigate to larger XML fragments that enclose the returned

result.
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The Lucene-based prototype was tested for correctness on a number of complex exam-

ples including those discussed earlier, and for general applicability and performance on large

datasets such as SIGMOD Record (468 KB), Mondial (1.7 MB), and DBLP (337 MB). The

exercise was useful in clarifying subtlities associated with the expressive power of the lan-

guage, especially coherence in the context of heterogeneous XML documents, repeated term

queries, etc, and obtain relative quantitative measures of space-time tradeoffs for indexing

and search. For a practical deployment, it is necessary to develop efficient low-level indexing

strategies from scratch, rather than build on Lucene. Given that indexing can be done offline

(and even incrementally), this seems reasonable.

The time to determine the XPaths of the result fragments is only a fraction of the time

taken to extract and display the corresponding XML file fragments. The time required to

compute query answers depends on the form of the query and the dataset. For instance,

in the context of SIGMOD dataset, the time required for a simple query returning small

answer set such as author::Philip is very different from the time required for complex

ones returning large answer set such as article::, author:position:01 and +author::,

+title::. The answer set display time is an order of magnitude larger. Note also that

routine web search queries against the DBLP dataset return small answer sets.

For XHTML documents, the query language enables accessing title, searching for key-

words, and using element/attribute to limit text around a keyword (such as itemized/enumerated

list). However, lacking bracketing construct for sections in XHTML, the text between suc-

cessive headings alone cannot be displayed. Similarly, lacking flexible extraction of all and

only specified elements within another element, a table of contents from headings cannot be

composed.

5 Conclusions and Future Work

The proposed XML query language has been designed with a straightforward syntax to ease

query formulation, incorporating not only text data content but also metadata information

in the source XML document. The query semantics has been designed in a such a way that

the answers try to provide complete and relevant information, and is robust with respect

to various manifestations of the same information in terms of XML elements and XML

attributes, to improve recall. In other words, the intuitive duality between the usages of

elements and attributes has been taken into account. Unfortunately, in relation to traditional

IR, certain keyword queries may yield answers that are over-specific from user’s perspective,

necessitating inclusion of metadata information in the query to control the granularity of
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answers, or use the access path information of the hit to manually explore the neighborhood

of the hit. That is, if the query response does not contain adequate information beyond

the query terms, the user may have to intervene by expanding the query, or exploring the

neighborhood of the XML subtree manually. To summarize, the proposed query language

enables naive users to employ keywords to access XML document fragments, while allowing

more advanced users, who know or discover XML Schema used, a means to express partial

information in formulating more precise queries.

Another possible approach to overcome the solution granularity problem is to specify what

kinds of subtrees (in terms of root labels) should be allowed in the answers. Given that there

are several possible characterizations of what constitutes a keyword hit, based on the view of

an XML document (data-centric vs document-centric), the query language can be enriched

to enable the users to program-in their choices based on the context, as opposed to hard-

coding a single definition of “keyword-containment-in-text”. Coherence can be improved by

using an ontology, or by incorporating transformations such as stemming, term expansion

using synonyms, etc. However care must be taken to verify that such transformations do

not cause semantically different elements to be confused, for instance, author and authors

in SIGMOD dataset.

Design, analysis, implementation, and evaluation of XML retrieval systems is still in its

infancy relative to the well-established field of information retrieval from text documents.

In order to understand the practical benefits of the current work, it is still necessary to

develop necessary metrics for evaluation, and carry out detailed, scientific experimentation

with XML benchmarks along the lines proposed in Lalmas and Tombros [31].

Our implementation of indexing and search of XML documents is reasonably efficient

and effective for experimentation. The use of required/optional query terms and the notions

of interconnectedness allow us to prune the query results. In future, we plan to develop

a simple yet robust relevance ranking strategy for heterogeneous document-centric XML

fragments, to further organize the query results. For this approach to be viable on Web scale,

to be incorporated in Web Search Engine, more research is required on low-level indexing

strategies for efficient storage and retrieval of index information and of the corresponding

XML fragments, and for relevance ranking of XML fragments.
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