

GTrans: An Application for Managing Mixed-Initiative Collaborative Planning
during Emergency Response Situations

Trivikram Immaneni and Michael T. Cox
Wright State University

Department of Computer Science & Engineering
Dayton, OH 45435-0001

{timmanen, mcox}@cs.wright.edu

Abstract

This paper describes the design of a mixed-initiative
collaborative planning system called GTrans. GTrans
is a distributed application in which multiple, remote
agents collaborate to jointly solve a problem. The
system allows the users to interact with semi-
autonomous planning agents and with each other.
When solving a given problem, resource constraints
often prevent perfect plans from being assembled
that achieve all goals. In such cases, users are able to
shift resources and to shift the goals themselves so
that equilibrium can be achieved to maximize the
solutions. To assist collaboration, GTrans controls
what each user views through a shared object
mechanism. Currently the mechanism supports static
selective filtering, but it provides an extensible
framework that will enable dynamic filtering.

Keywords: Design of collaborative systems, intelligent
agents in collaborative applications, shared objects, mixed-
initiative planning, goal transformations.

1 INTRODUCTION

GTrans (Goal Transformations) [1-3] is a mixed-
initiative planning system that has been designed to directly
support the concept of goal transformation [4] or change. It
presents planning tasks to the user as a goal manipulation
problem rather than a problem of search [2, 5, 6]. GTrans
hides the underlying planner and representations from the
user and provides the user with simple mechanisms with the
help of which she can actively participate in the planning
process. However most of our research has focused on
single user / single planner interaction. Here we present
preliminary work toward the support of collaborative
mixed-initiative planning between multiple users.

The most straight forward approach to supporting
multiple human agents is to present a single unified view of
a planning scenario, associated resources and shared goals.
With realistic planning situations, however, many of the
resources and details present will not be relevant to most

users of the system. We have implemented a shared-object
mechanism that begins to control the individual views each
user maintains. The mechanism allows the establishment of
ownership of resources and goals so that users have separate
viewing and control properties for each object in a planning
environment. The mechanism also supports the manual
transfer of object ownership for shifting the assignment of
resources. Using this mechanism selective filtering is
established so that users are not overwhelmed by
inappropriate information.

While adding such a capability, it is also necessary to
maintain the overall metaphor of planning as a goal
manipulation process. In this paper we present a multi-user
version of GTrans that uses a newly implemented
emergency response domain. In this domain planners can
explore tradeoffs between partial goal achievement (goal
shift) and resource reassignment (ownership shift). We
present a simple scenario to illustrate these ideas and to
highlight the implementation. Moreover, we describe how
the current static filtering of object views can be made more
flexible by the addition of dynamic object exposure that is
triggered by inappropriate planning decisions made by
collaborative teammates.

Section 2 describes the basic architecture of GTrans and
the major components of the system. Section 3 describes the
various modes in which GTrans operates. Section 4
describes the concept of shared objects and Section 5
describes some of the research issues that we are planning to
explore in the future. We conclude with Section 6.

2 THE GTRANS SYSTEM

The architecture of the GTrans system1 is shown in
Figure 1. The GTrans Server, GTrans User Agent and
PRODIGY/AGENT are the major components in the
system. The basic planning process for a user is to create a
problem using the graphical user interface of the GTrans
User Agent and to send it to the underlying Prodigy/Agent
planner. If all is well, the planner will generate a successful

1The GTrans home page is located at the following URL.
www.cs.wright.edu/~mcox/GTrans

Figure 1. The GTrans Architecture

plan for the problem and return it to the User Agent, which
will then display it to the user. If the planner cannot create a
plan (usually due to the lack of adequate resources) it will
return the message “No Plan” to the User Agent. When this
happens, the user must either change the goals or acquire the
necessary resources from other GTrans User Agents. The
User can then send the (modified) problem back to
PRODIGY for planning. The GTrans Server acts like a
central mediator that helps multiple, remote GTrans Agents
to coordinate with each other and share each other’s
resources. The following is a brief description of each of the
major components of GTrans.

2.1 Prodigy/Agent

Prodigy/Agent [7, 8]2 (written in Allegro Common Lisp
and compatible with versions 5.0.1 or higher) consists of the
PRODIGY planner and a wrapper program. The wrapper
program acts as a software interface between the PRODIGY
planner and the GTrans User Agent. It allows the GTrans
User Agent to communicate with the PRODIGY planner
through a protocol implemented in the Knowledge Query
and Manipulation Language or KQML [9]. The two
modules exchange KQML performatives using socket
communication.

PRODIGY [10, 11] is a domain-independent, nonlinear
state-space planner implemented originally at Carnegie
Mellon University. It searches for a sequence of actions that
transform the environment from an initial-state into a final-
state containing the goal state. Like all state-space planners,
its problem specification includes a set of objects existing in
the planning environment, the initial state of the
environment, and the goal state that needs to be achieved by
the plan. As of now only four of the many PRODIGY

2 The Prodigy/Agent home page is located at the following
URL www.cs.wright.edu/~mcox/Prodigy-Agent

domains have been implemented to work with GTrans - the
“military,” “blocksworld,” “package delivery” and
“emergency response.”

2.2 The GTrans User Agent

This module has been implemented using Java Version
1.2. The user interacts with the system using the graphical
user interface (GUI) of the GTrans User Agent. This GUI
consists of a main menu bar with dynamic menus and a
work area (called the canvas) in which the user builds the
problem. Building the problem and sending it to the planner
is a simple, interactive, menu-driven process. For example,
the user can create objects by choosing an object type from
the “Object” menu of the GUI and clicking on the canvas.
Objects can be moved by dragging and dropping. The GUI
provides the user with a simple menu-driven mechanism to
facilitate goal change.

GTrans is a multi-agent system in which several
planning agents can jointly solve a problem. The GTrans
Agent can operate in the three distinct operational modes of
“Separate Planning” (default mode), “Info-sharing” and
“Joint Planning” modes. The user can choose from a drop-
down menu, the planning mode in which she wants to
operate. If the user chooses to work in the Separate Planning
mode, then she will perform separate, stand-alone planning
without any access to other agents’ information. In the Info-
Sharing mode, the user will be able to view the other agents’
information, but she will not be able to use the other agents’
resources to solve her problem. In the Joint Planning mode,
the user will not only be able to view other agents’
information but will also be able to use their resources to
solve a problem.

In the Info-Sharing and Joint modes, the GUI will act
like a typical whiteboard application. Each event that occurs
with an agent (e.g., object creation, object deletion) is first
sent to the GTrans Server. The server then broadcasts it to
all the other agents. The agents communicate with the

 GTrans
 Server

GTrans User
 Agent

PRODIGY/
 AGENT

GTrans User
 Agent

GTrans User
 Agent

PRODIGY/
 AGENT

PRODIGY/
 AGENT

Problem

Problem

Problem

Plan

Plan

Plan

central GTrans server (and vice-versa) using Java RMI. If
the agent receiving this broadcast information is in the
Separate Planning mode, it simply discards the information.
But if the agent is in the Info-Sharing or Joint Planning
modes, it receives the information and updates its data
structures to reflect the new event. The objects belonging to
other agents are labeled red in order to help the user
distinguish them from local objects. The process of creating
a problem, changing goals, and the operation of GTrans in
various modes is discussed in the next section with the help
of an example scenario.

2.3 The GTrans Server

This module has been implemented using Java Version
1.2. The GTrans Server acts like a central coordinator for
the agents in the system. It communicates with the agents
using the Java remote method invocation mechanism. The
server is also responsible for assigning a unique
identification number to every agent in the system. When an
agent is started, it first contacts the server and requests its
identification. Most of the events occurring at an agent are
sent to the server, which then broadcasts the information to
all the other agents.

The GTrans Server also acts as a repository of shared
resources. Any agent can request the use of these resources.
The server is responsible for coordinating and controlling
the use of these shared resources by the agents. The concept
of shared resources and the role of the server in controlling
them are discussed with an example in Section 4.

3 THE OPERATION OF GTRANS

As part of an ongoing project with Ball Aerospace and
Science Applications International Corporation (SAIC), we
are currently integrating the GTrans system with Ball’s
Knowledge Kinetics© software and with SAIC’s
Consequences Assessment Tool Set (CATS). Also as a part
of this project, we are implementing a simple emergency
management planning domain in GTrans. This section
describes the working of the GTrans system using an
example scenario from this domain.

The objects in a given domain are broadly divided into
the two categories of stationary and mobile. The mobile
object types in the emergency response domain include
squad car, ambulance, fire truck, victim, sheriff car, SWAT
team and a Hazardous Materials (HAZ-MAT) team. The
stationary objects include city, scene-of-incident, police
station, fire station, hospital, HAZMAT station, chemical-
spill, fire, and sheriff station. A typical scenario in this
domain is shown in figure 2.

This hypothetical scenario is a result of a tornado. We
can see two incidents, two fires, two fire trucks, two squad
cars, a HAZMAT team, an ambulance, a fire station, a
hospital, a HAZMAT station and the city called Xenia. As
mentioned before, GTrans provides the user with simple
GUI driven mechanism to create objects. Once an object has

Figure 2. A scenario in the emergency response domain

been created, GTrans dynamically extracts all the possible
initial states that the object can be in from the domain
information. Likewise, GTrans derives all the possible goals
that can be associated with the object from the domain
information. The user can then set the initial state and the
goal state of the object by using simple GUI mechanisms.
For example, in the above scenario, the following goals
were established on xenia1.

(outcome-putout-fires xenia1)
(is-managed-all xenia1)

The domain has been organized so that to put out a fire
at a scene-of-incident, the scene must first be secured by a
security vehicle (i.e., squad car or sheriff car). Once the
scene is secured, a fire truck must be driven to the scene and
put out the fire. The domain has been designed such that a
single fire truck can guarantee to put out one fire and
contain an arbitrary number of others. To fulfill the goal
(outcome-putout-fires xenia1), all the fires in xenia1 must
be extinguished. The goal (is-managed-all xenia1) is
fulfilled when all the incidents in xenia have been managed.

Enough resources exist in figure 2 to achieve these
goals. Two squad cars can secure the two scenes and two
fire trucks can put out the two fires. After building the
scenario, the user can save the scenario for later use. She
can then send the problem to the planner using appropriate
menus. The underlying planner will try to generate a plan
and will return any results. If the plan is not acceptable to
the user, Prodigy/Agent can generate an additional plan at
the user’s request. The user can also request different and
shorter plans. Figure 3 shows the plan generated by the
planner for the scenario shown in figure 2. The plan is to use
squad-car2 and squad-car1 to secure scene-of-incident1 and
scene-of-incident2 respectively and to use firetruck1 and
firetruck2 to put out the fires fire1 and fire2 respectively.

The GUI also provides the user with an option to
associate specific resources with goals. When a mobile
object is dragged near a stationary object, GTrans extracts

Figure 3. Plan generated by PRODIGY for fig.2 scenario

all the possible goal states that “connect” the two objects
from the domain information. GTrans then presents this list
to the user from which she can select the appropriate goal.
In the above example, if the user wants to make sure that
squad-car1 is used to secure scene-of-incident1, then she
can drag the squad-car1 to the scene-of-incident1 and
choose the state “at-squadcar1 scene-of-incident1” from the
menu that appears. This will set another goal state that
stipulates that squadcar1 has to be at scene-of-incident1.

In the above scenario, the planner had sufficient
resources to solve the problem and hence it was able to
generate a plan. Now consider a scenario in which the
planner does not have sufficient resources to generate a
plan. The scenario is the same as above but with one
additional incident, scene-of-incident3. We have a
chemical-spill at scene-of-incident3. The domain has been
designed such that, to manage a chemical-spill, security
personnel must be present at the scene (i.e., at least one
squad car or a fire truck must be present). Also the
HAZMAT team must arrive at the scene to manage it. In
this scenario, we do not have sufficient resources to solve
the problem. We need another security-vehicle or fire truck.
If this problem is sent to Prodigy/Agent with the same goals
as before, the planner will return the message “No Plan.” At
this point, the user can either transform the goals or acquire
additional resources to solve the problem. For example, the
user can lower her expectations by changing the goal of
putting out all the fires to the goal of containing the fires so
that one fire truck can handle the new incident.
Alternatively, the user may decide to let the fires burn.
Figure 4 depicts the pop-up menu with which the user
changes the goal.

Once the goal has been transformed, the user can resend
the problem to the underlying planner. In this case, the
planner generates a successful plan. The plan is to use fire-
truck1 to put out fire1 and contain fire2 and to use fire-
truck2 to take care of the spill. The HAZMAT Team is to be
driven to the spill to stabilize and dispose the spill. As an
alternative to goal change, the user can change to the joint -

 Figure 4. Performing Goal Change

mode and collaborate with other users to solve this problem.
In the Joint mode, the user will see the objects of the other
agents in the system. The user can also see the state
information and the goal information of the other agents in
the system. In this mode, the user can use the objects
belonging to the other agents to solve her problem. While in
the joint-mode, every operation performed by the remote
users in the system (adding an object, setting a state, setting
a goal etc.,) can be immediately seen by the user.

For the above example, let us consider another agent in
the system, working with a highly simplified scenario. That
is, the agent has a sheriff car stationed at a sheriff station,
but the agent does not have any incidents to manage. Now
the user need not make any goal change, because in the joint
mode she can use the extra sheriff car to solve her problem.
This is a highly simplified example to demonstrate the
operation of GTrans. In practice, it may so happen that the
second agent might have a fire and no fire truck. In such a
case, the two agents must collaborate. The first agent lowers
its expectations so that the second agent can use the first
agent’s fire truck to extinguish the fire.

To illustrate this concept better, consider the situation
where the first agent has only one squad car (instead of the
two shown in fig. 2). Let us assume that a chemical-spill has
occurred in the second Agent’s scenario. Figure 5 shows
second Agent’s GUI.

Figure 5. Second Agent’s scenario

That is, the first Agent has two fires but one only

security vehicle whereas the second Agent has a security
vehicle and a chemical-spill. The first Agent needs the

sheriff car from the second Agent and the second Agent
needs the HAZMAT Team from the first Agent. In this case
the two agents must collaborate and negotiate on the goals
to decide how their resources can be used to solve the
problems. For example, the first user may lower her
expectations and change her goal of “outcome-putout-fires”
to “outcome-contain-fires” so that one of the fire trucks can
be used by the second Agent to take care of the spill. In
return the Agent can use the second Agent‘s sheriff car to
secure its scene-of-incident.

4 SHARED OBJECTS

One current research issue is the idea of filtering the
information presented to the user. In the joint-mode, the user
can presently view all objects belonging to all of the other
agents in the system. Ideally, the system should display only
those remote objects that are relevant to the problem the
user is trying to solve.

Another issue we are currently investigating is the idea
of ownership of objects. At present, while planning in the
joint-mode, the user assumes that the objects belonging to
other agents are readily available for her use. In the real,
world this might be an unrealistic assumption. For example
in order to use a sheriff car, the city must first get
permission from state authorities. The state authority may or
may not give the permission in which case the user must
consider an alternate plan.

To address these issues, we are incorporating the idea of
shared objects in GTrans. We have designed the server to
act as a repository of objects that can be used by any of the
agents in the GTrans system. The shared objects are labeled
green on the canvas to help distinguish them from other
objects. Not every user can view all shared objects. Each
shared object is associated with a list of agents, and only
these agents receive information about the object. The
server reads the shared object information from a text file
and stores the objects in its data structures. The “visibility”
information is also read from the same text file. The users
can request only those shared objects that are visible on
their GUI. In fact they do not have any knowledge of the
other shared objects. In order to use a shared object, the user
must first request the server for permission to use the object.

The user can request a shared object using a menu-
driven mechanism. When the server receives this request, it
first checks to see if any other agent is using the object. If
no other agent is using the object, the server grants the
request and sends the message “Permission Granted” to the
agent. At this point, the label of the shared object being
requested turns blue (only on the requesting agent’s GUI),
indicating that the agent can now use the object in its plans.

Figure 6 shows the original scenario along with a sheriff
car and the (third) fire truck. The sheriff car has been
requested by the user and the server has granted the user
permission to use the sheriff car. At this point, if any other
agent requests the same object, the server denies permission
with the message “Object in use…Permission denied.” Once

Figure 6. Message from the server granting the request for

the sheriff car

the agent has finished using the object, it must release the
object so that others can use it. The data structures in the
server are protected from simultaneous accesses to ensure
consistency. In GTrans, the “resources” are usually mobile
objects. Each mobile object is associated with a stationary
object. For example, the sheriff car is attached to a sheriff
station. For this reason, each shared object is actually a pair
of GTrans objects. This concept of shared objects ensures
that a resource is used by only one agent at a time and it also
helps the agents to take resource availability into
consideration while planning. The shared objects (that are
available to the agent) stay hidden until the user wishes to
see them. This ensures that they do not hinder the process of
planning with local resources.

5 FUTURE RESEARCH

This paper discusses a mechanism whereby a static
object view and ownership determines what individual
planners can see and control in the collaborative planning
process. Although the shared objects can change through
manual resource requests, the view individuals possess is
not sensitive to changes in the environment due to
exogenous events or to planning steps chosen by
collaborative teammates. For example one teammate may
decide to establish a roadblock to secure the site of an
incident, but by doing so this action may prevent the
passage of an ambulance necessary for the achievement of
another teammate’s goal to assist burn victims. Ideally the
system should be able to detect this goal interaction, to
dynamically expose the squad-car involved in the roadblock
and the vehicle involved in transit, and thereby to initiate
negotiation between the two collaborators.

Previous research on artificial multiagent systems using
Prodigy/Agent [12] does detect such goal interaction.
Rationale-based planning monitors [13] provide such

coordination by watching for changes in the state of those
conditions responsible for action selection and by
broadcasting each planning operator‘s effects when the
operator is applied during the search process of PRODIGY.
For example, if one agent decides to use a Drive-Ambulance
operator whose precondition is that the road upon which the
transit occurs is open, Prodigy/Agent establishes a monitor
to watch that the state does not change. Then if another
agent decides to block a road with a squad car, when the
operator is applied to the current state, the state change is
broadcast to all monitors. The initial agent can therefore trap
the effect of the other agent if the two roads are the same
and initiate a response. As a result the next issue we intend
to investigate is the use of such planning monitors in the
service of dynamic filtering and exposure of objects in the
individual views presented by GTrans.

6 CONCLUSION

Although this research and the prototype developed
under it is only preliminary, it has provided a number of
insights into the problems and approaches associated with
mixed-initiative collaboration. Using a fully automated
planner in actual emergency situations is impractical. The
writer of a domain cannot possibly imagine all the possible
parameters that might need to be taken into consideration to
solve a problem in an emergency situation. Mixed-initiative
planning is ideal for these types of situations. The human
user plays a very active role in the planning process and can
serve to compensate for the shortcomings of the planner
itself. The system serves as a tool for the user to better
assess the situation thereby helping her make critical
decisions. A collaborative system like GTrans not only
helps multiple remote users to get a better perspective on the
situation but also lays a foundation upon which the decision
makers can negotiate. They thus can compromise on their
individual goals to solve the overall goal of minimizing the
damage caused by an emergency such as a tornado.

ACKNOWLEDGEMENTS
 This research has been funded by a grant from the
Information Technology Research Institute (ITRI) and a
grant from SAIC. The authors wish to thank N. N.
Schneider of Ball Aerospace and Richard Henderson of
SAIC for their valuable help in implementing an integration
of GTrans into more realistic set of scenarios than would
otherwise be possible using GTrans alone. We also thank
Vance Saunders (Ball), Denny Kirlin (SAIC) and Brian
Beebe (SAIC) for comments and feedback on the project.

REFERENCES
[1] Cox, M., B.Kerekez, C.Srinivas, G.Edwin, and
W.Archer. 2000. “Toward agent-based mixed initiative
interfaces.” In Proceedings of the 2000 International
Conference on Artificial Intelligence, ed. H. R. Arabnia,
1:309-315. CSREA Press.

[2] Zhang, C. 2002. “Cognitive Models for Mixed- Initiative
Planning.” Master’s thesis, Wright State University.
[3] Zhang, C., M. T. Cox, and T. Immaneni. 2002. “GTrans
version 2.1 User Manual and Reference.” Technical Report
WSU-CS-02-02. Department of Computer Science and
Engineering, Wright State University.
 [4] Cox, M. T., and M. M. Veloso. 1998. ”Goal
transformations in continuous planning.” In Proceedings of
the 1998 AAAI Fall Symposium on Distributed Continual
Planning, ed. M. desJardins, 23-30. Menlo Park, CA: AAAI
Press / The MIT Press.
[5] Cox, M. T. 2000. “A conflict of metaphors: Modeling
the planning process.” In Proceedings of 2000 Summer
Computer Simulation Conference, 666-671. San Diego: The
Society for Computer Simulation International.
[6] Cox, M. T. 2003. ”Planning as mixed-initiative goal
manipulation.” In Proceedings of the Workshop on Mixed-
Initiative Intelligent Systems at the 18th International
Conference on Artificial Intelligence. Menlo Park, CA:
AAAI Press.
[7] Cox, M. T., G. Edwin, K. Balasubramaniam, and M.
Elahi. 2001.”Multiagent goal transformation and mixed
initiative planning using Prodigy/Agent.” In Proceedings
of the 5th World Multiconference on Systemics, Cybernetics
and Informatics, ed. N. Callaos, B. Sanchez, L. H. Encinas,
and J. G. Busse, 7:1-6. Orlando, FL: International Institute
of Informatics and Systemics.
 [8] Elahi, M. M. 2003. “A distributed planning approach
using multiagent goal transformations.” Master’s thesis,
Wright State University.
[9] Finin, Tim, Don McKay, and Rich Fritzson. 1992. “An
Overview of KQML: A Knowledge Query and
Manipulation Language.” Technical Report, Department of
Computer Science, University of Maryland.
[10] Carbonell, J. G., J. Blythe, O. Etzioni, Y. Gil, R.
Joseph, D. Kahn, C. Knoblock, S. Minton, A. Perez, S.
Reilly, M. M. Veloso, and X. Wang. 1992. “PRODIGY4.0:
The Manual and Tutorial.” Technical Report CMU-CS-92-
150. Computer Science Department, Carnegie Mellon
University.
[11] Veloso, M. M., J. G., Carbonell, A. Perez, D. Borrajo,
E. Fink, and J. Blythe. 1995. “Integrating planning and
learning: The PRODIGY architecture.” Journal of
Theoretical and Experimental Artificial Intelligence 7(1):
81-120.
[12]Edwin, G., and M. T. Cox. 2001. “Resource
coordination in single agent and multiagent systems.” In
Proceedings of the 13th IEEE International Conference on
Tools with Artificial Intelligence, 18-24. Los Alamitos, CA:
IEEE Computer Society.
[13] Veloso, M. M., M. E. Pollack, and M. T. Cox. 1998.
“Rationale-based monitoring for continuous planning in
dynamic environments.” In Proceedings of the Fourth
International Conference on Artificial Intelligence Planning
Systems, ed. R. Simmons, M. Veloso, and S. Smith, 171-
179. Menlo Park, CA: AAAI Press.

