
Formalizing and Querying Heterogeneous

Documents with Tables

Krishnaprasad Thirunarayan and Trivikram Immaneni

Department of Computer Science and Engineering
Wright State University, Dayton, OH 45435, USA.
t.k.prasad@wright.edu, immaneni.2@wright.edu

http://www.cs.wright.edu/~tkprasad

Abstract. This paper explores the application and extension of XML
technology for formalizing and querying heterogeneous documents con-
taining text and tables. Specifically, it analyzes the pros and the cons
of embedding the formalization into the original document to obtain an
XML Master document that improves traceability while enabling mak-
ing explicit interpretation of tables separately, in a modular fashion. This
work is relevant for formalizing, representing, and manipulating (domain-
specific) content in legacy semi-structured documents, and for authoring
new documents with tables that should be simultaneously human read-
able and machine processable.

1 Introduction and Motivation

XML has been used to annotate documents with metadata in the realm of docu-
ment processing and content extraction, to be read and maintained by humans.
XML has also been widely used as a standard text-based format for information
exchange/serialization in the context of Web services, for manipulation by ma-
chines. These two prevailing applications of XML have been termed document-
centric and data-centric respectively. This paper explores an approach to uni-
fying these two views by using XML elements to materialize abstract syntax,
and together with XML attributes, to represent the semantics via annotation,
obtaining an XML Master document that is both human sensible and machine
processable. This work can be beneficial for formalizing, representing, and ma-
nipulating (domain-specific) content in legacy semi-structured documents, and
for authoring new documents that are simultaneously human and machine con-
sumable.

In order to better situate the current work, consider the relationship between
information extraction and document authoring for the Semantic Web, in terms
of client-server paradigm. Information Extraction deals with automatic filtering
of legacy documents and filling-in a pre-specified, domain-specific template by
a client/end user. In contrast, Semantic Web requires authoring of documents
conforming to a fixed ontology by a server/document creator [1, 3, 11]. This pa-
per pursues a pragmatic, semi-automatic approach to annotation that straddles

these two extremes. The ultimate goal is to develop the document and its for-
malization hand in hand, and keep them side by side, to improve traceability
(that is, maintain implicit link between original document fragments and its
formalization).

The documents of interest are heterogeneous and semi-structured, containing
text and tables. For example, consider the following table type that appears
frequently in materials and process specs, which gives tensile strenth and yield
strength as a function of the thickness of a specimen:

Thickness (in) Tensile Strength (ksi) Yield Strength @0.2% offset (ksi)

0.5 and under 165 155

0.50 - 1.00 160 150

1.00 - 1.50 155 145

...

Table 1. Tensile Strength and Yield Strength Table in Spec

Handling tables requires recognizing table layout and understanding table
content, for subsequent manipulation. The table topology alone cannot be used
to understand tables automatically because the semantics of a table is nor-
mally gleaned by a user from the heading labels and captions that relate various
columns and rows. A potential semi-automatic approach to dealing with tables
is to develop a catalog of table types and its processing via XML and XSLT
stylesheets, and then make explicit the interpretation of each table instance
occuring in a document manually, using specific XML-based annotations. The
composite XML document not only provides a human sensible view, but also
supports machine manipulation. This approach holds promise in so far as the
number of table instances far outnumbers the number of table types because the
manual effort required to annotate a table instance is relatively less compared
to formalizing table processing that respects table’s semantics.

In Section 2, we discuss several interesting issues and techniques related to
table handling. Specifically, we situate, analyze, and review our past work on
formalizing and querying tables in Water [13]. In Section 3, we present details
on formalizing tables in XML and using XSLT stylesheets for table manipulation,
and discuss obstacles, advantages and disadvantages. In Section 4, we conclude
with a summary of remaining problems to be solved and suggestions for future
work.

2 Related Work

There are a number of practical, orthogonal research issues pertinent to handling
of tables found in documents as discussed below:

Extraction of Tabular Data: Tables in documents available in plain text,
MS Word, or PDF form may be hand-formatted or created using table prim-
itives. The techniques we have developed in the past can be used to convert
MS Word document into plain text that delimits and preserves table layout,
so that it is human readable [12]. The work on table extraction of Pinto et
al [6] deals with the isolation of complex tables from the rest of the text,
and identifying the title, row headings, cell boundaries, etc. Similarly, earlier
work on Wrapper Induction and its robust generalization to accommodate
visual cues implicit in the geometry of the tables can assist in table extrac-
tion from HTML documents [4] [2]. In the realm of content extraction from
materials and process specs, we also need to deal with complex column head-
ings. Similarly, there are systems that address issues such as the recognition
of table components in a text document (e.g., TINTIN [8], [5],[15]) or the
representation of structure and flexible presentation of tables (e.g., Tabula-
Magica [9]). For the current state of the art, it seems reasonable to expect
the extractor to manually identify and tag the table components, and focus
on how to interpret the domain-specific table content.

Representation of Tabular Data for Semi-automatic Translation : There
are several different issues to be considered regarding the semantics of tab-
ular data:
– Consider an XML-inspired approach to providing semantics to tables

in plain text that promotes traceability, where a table contains both
the headings and the data. The precise relationships among the various
values in a row/column are tacit in the heading labels, and obvious to
extractors. However, this semantics needs to be made explicit to do any
machine processing. But storing only a semantics rich translation in a
new formalism is not always conducive to human comprehension or flexi-
ble. So the representation language should have the provision to more or
less preserve the grid layout of a table to promote readability and enable
changes to the original table to be easily incorporated in text, while de-
scribing the interpretation of each row/column in a way that is flexible
and applicable to all rows/columns for further machine manipulation. We
have looked into two different avenues, each with its own pros and cons
[13]: In Water [7], annotation definition can encapsulate interpretation
and be treated as a method, while the annotated data can be viewed as
a method call. This novel view of annotation enables the interpretation
of data to be described in an additive fashion, shared among multiple
annotated table instances of the same kind. Unfortunately, this Water
program is not a well-formed XML document, thereby losing the ability
to reuse techniques and tools developed for manipulating XML docu-
ments. Furthermore, Water is not conducive to convenient embedding
of the formalization into the original document, because Water requires
the original text to be delimited and incorporated as comments. On the
other hand, a well-formed XML annotated table intersperses tags with
table data which is not always desirable considering the effort required
to create it and the form that results.

– Another approach worthy of exploration is to define a language of table
expressions with compositional semantics that enables one to build and
manipulate tables with headings algebraically along the lines of Wol-
fram[14].

– At this juncture, a viable approach to dealing with tabular information
is to develop a catalog of predefined tables and map the tabular data
into a set of pre-defined tables, possibly qualified. For instance, a com-
plex table can be built as a union of qualified simple tables. Overall,
manual mapping of complex tables into simpler regular structures have
the following benefits:
• It provides semantics to data, thereby removing any lurking ambi-

guities.
• It provides natural expression of data for traceability and ease of use.
• It enables automatic manipulation, that is, querying and translation.

Manipulation of Tabular Data : Once the problem of table representation
is solved, we need to develop the corresponding language and techniques for
querying, combining and detecting conflicts among related tables.

3 XML/XSLT-based Approach to Tables

Recall that heterogeneous, semi-structured text documents are not conducive
to machine processing. So it makes sense to develop techniques to abstract,
formalize, and represent their content in a more structured manner. In order
to ascertain the soundness of the formalization/translation, it is important to
link the original document fragments with their formalization. The additional
data structures needed to capture this association can be simplified if the for-
malization can in fact be embedded in the original document. Furthermore, the
composite document has potential to be readily understood and updated by a
human user due to its resemblance to the original document.

The document-centric and data-centric views of XML seems to provide a
means to the desired end:

– XML can encode text and tabular data, to make explicit abstract syntax
and the semantics via annotations, and

– XSLT stylesheets can be used to describe various interpretations respecting
the semantics for formal manipulation, in a modular fashion.

Relationships described in plain text can be formalized using XML elements
and XML attributes. However, it is much harder to deal with tables as discussed
below.

Water, an XML-inspired programming language, provides a rich substrate for
formalizing and querying heterogeneous documents [13]. The annotated data can
be interpreted as a method call, and the XML-element as a method. However, the
correspondence between formal parameters and actual arguments is positional,
yielding an ill-formed XML document in the presence of tables. Specifically, this

approach does not permit flexible embedding of annotations into text, or use of
XML techniques and tools (such as XSLT).

We will now attempt to annotate a document containing the text of a table,
to capture its semantics via suitably chosen XML tags and XSLT stylesheets
that manipulate the table according to its semantics. Any deviation from XML
well-formedness criteria will be remedied by reinterpreting the resulting docu-
ment in terms of an “equivalent” XML document. Specifically, we will reinter-
pret positional association of actual arguments to formal parameters using fixed
name-based associations that can be captured in XML using attribute-value
pairs and manipulated using XSLT stylesheets. Once this association is clarified,
the annotated data can in fact be interpreted differently by programming-in
different interpretations for the XML-element using different XSLT stylesheets.
For instance, one can recover just the text sans the annotations, verify integrity
constraints, transform data or even facilitate data querying (such as by mapping
the annotated document into Prolog-like syntax). Concretely, the requirement
that temperature must be a number (static type), or should be in the range
from 300oF to 500oF (dynamic constraint) can be made explicit by defining
temperature constraints via XSLT stylesheets.

We illustrate the XML-based representational issues and XSLT-based trans-
formational details using the following illustrative example of a tensile data table
taken from materials and process specs.

Thickness (in) Tensile Strength (ksi) Yield Strength @0.2% offset (ksi)

0.5 and under 165 155

0.50 - 1.00 160 150

1.00 - 1.50 155 145

...

Table 2. Input Tensile Data Table

This table can be extracted as text from an MSWord document and subse-
quently manually annotated to bring out its structure as shown below:

<table type="Tensile">
<parameter name="Yield Offset" value="0.2%"/>
<tableSchema "Thickness(min)" "Thickness(max)" "Tensile Strength" "Yield Strength"/>
<tableUnits "inch" "inch" "ksi" "ksi" />

<tableData "0" "0.50" "165" "155" />
<tableData "0.50" "1.00" "160" "150" />
<tableData "1.00" "1.50" "155" "145" />

...
</table>

In particular, the double quotes and annotations clearly delimit atomic values,
relate data and clarify the column headings, the units of measure, and the ta-
ble parameters which are crucial for proper interpretation of the tensile table
data. Unfortunately, the annotated table is not a well-formed XML fragment.
To ensure well-formedness, we need to come up with a regular scheme for au-
tomatically deriving an equivalent XML document, for example, by introducing

sequencing attributes one, two, three, . . . , etc to capture positional associations
via named-associations.

<?xml version="1.0" encoding="ISO-8859-1"?>
<table type="Tensile">
<parameter name="Yield Offset" value="0.2%"/>
<tableSchema one="Thickness(min)" two="Thickness(max)" three="Tensile Strength" four="Yield Strength"/>

<tableUnits one="in" two="in" three="ksi" four="ksi" />
<tableData one="0" two="0.50" three="165" four="155" />
<tableData one="0.50" two="1.00" three="160" four="150" />
<tableData one="1.00" two="1.50" three="155" four="145" />

...
</table>

This in-place formalization of a table instance, when augmented with reusable,
table type specific XSLT stylesheets yields a representation that exhibits a pre-
scribed semantics and is both human accessible and machine manipulable. In
particular, XSLT stylesheets can be designed to carry out the following opera-
tions on the XML document that contains both the original text table and the
annotated table:

– Query: to perform table look-ups.
– Transform: to change units of measure such as from standard SI units (In-

ternational System of units) to FPS units (Foot, Pound and Second system
of units) and vice versa.

– Format: to display the table in HTML form.
– Extract: to recover the original table in text form.
– Verify: to check static semantic constraints on table data values.

We now present two example XSLT stylesheets (that can be skipped by a
casual reader without any loss of continuity) and the generated results for il-
lustrative purposes, enabling better appreciation of the programming difficulties
and the pay-offs:

– Given a thickness, determine the tensile strength.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="text"/>

<xsl:template match="text()"/>

<xsl:template name="calculateTensile">
<xsl:param name="thick" select="0.65"/>
<xsl:if test="tableSchema[@one=’Thickness(min)’ and

@two=’Thickness(max)’ and @three=’Tensile Strength’]">
<xsl:if test="tableUnits[@one=’inch’ and @two=’inch’]">

<xsl:for-each select="tableData">
<xsl:if test="@one < $thick and $thick <= @two">

<xsl:value-of select="@three"/>
</xsl:if>

</xsl:for-each>
</xsl:if>

</xsl:if>
</xsl:template>

<xsl:template match="table[@type=’Tensile’]">
<xsl:call-template name="calculateTensile">
<xsl:with-param name="thick" select="0.25"/>

</xsl:call-template>
</xsl:template>

</xsl:stylesheet>

The stylesheet ignores text data, determines the appropriate tensile table
formalization in XML, and then searches through this table to determine
the applicable tensile strength value. For the example tensile table in XML,
for the thickness value of 0.25 inch, the looked up tensile strength value is
165 ksi (kilo-pounds per square inch).

– Given the table in FPS units, create an HTML table that displays the data
in both FPS units and SI units.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html"/>
<xsl:template match="/document">
<html>
<body>

<h2><xsl:value-of select="table/@type"/></h2>
<xsl:variable name="pval"><xsl:value-of select="table/parameter/attribute::value"/></xsl:variable>
<xsl:variable name="pname"><xsl:value-of select="table/parameter/attribute::name"/></xsl:variable>
<table border="1">
<tr bgcolor="#9acd32">

<xsl:for-each select="table/tableSchema/attribute::*">
<xsl:choose>

<xsl:when test="name(.) = ’four’">
<th>
<xsl:value-of select="concat(.,’ @’,$pval,’ ’,$pname)"/>
</th>
</xsl:when>
<xsl:otherwise>
<th>
<xsl:value-of select="."/>
</th>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>

</tr>
<tr bgcolor="#9acd32">

<xsl:for-each select="table/tableUnits/attribute::*">
<xsl:if test=".=’inch’">
<th><xsl:value-of select="concat(.,’ (’,’mm’,’)’)"/></th>
</xsl:if>
<xsl:if test=".=’ksi’">
<th><xsl:value-of select="concat(.,’ (’,’Mpa’,’)’)"/></th>
</xsl:if>

</xsl:for-each>
</tr>
<xsl:for-each select="table/tableData">

<tr>
<xsl:for-each select="attribute::*">

<xsl:variable name="a">
<xsl:value-of select="."/>
</xsl:variable>
<xsl:choose>
<xsl:when test="name(.)=’one’ or name(.)=’two’">
<th>

<xsl:value-of select="concat(.,’ (’,format-number($a*25.4,’#.#’),’)’)"/>
</th>
</xsl:when>
<xsl:otherwise>
<th>

<xsl:value-of select="concat(.,’ (’,format-number($a*6.895,’#.#’),’)’)"/>

</th>
</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</tr>

</xsl:for-each>
</table>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

For the example tensile table in XML that has thickness values in inch and
strength values in ksi, we generate HTML table for presentation that shows
thickness values in both inch and mm (millimeter), and strength values in
both ksi and MPa (MegaPascal or Newton per square millimeter) as shown
below.

Thickness (min) Thickness (max) Tensile Strength Yield Strength @0.2% Yield Offset

inch(mm) inch(mm) ksi(MPa) ksi(MPa)

0(0) 0.5(12.7) 165(1137.6) 155(1068.7)

0.50(12.7) 1.00(25.4) 160(1103.2) 150(1034.2)

1.00(25.4) 1.50(38.1) 155(1068.7) 145(999.7)

Table 3. Transformed Tensile Data Table for Presentation

To ensure practicality of this approach, we need a tool (1) with MS Front-
Page like interface where the Master document is the annotated form, the user
explicitly interacts with/edits only a view of the annotated document, for read-
ability reasons, and (2) with support for export as XML option which can turn
the annotated document into a well-formed XML document. For instance, in
the current context, this means adding attributes such as one, two, three, . . . ,
etc using a transformation shown below that can only be carried out outside of
XML/XSLT:

<elem "P1" "P2" "P3" ...>
==>

<elem one="P1" two="P2" three="P3" ...>

Ideally, we do not need to create a separate annotated table, distinct from
what can be obtained by annotating the original document, which further pro-
vides the context for interpretation of data and is amenable to track revisions
to the embedded tables.

4 Conclusions and Future Work

This paper explored techniques to imbue table instances with machine-processable
annotations to obtain an XML Master document, to promote traceability. The

positional association of table data with table headings is captured via semi-
automatically created named associations to obtain an XML-compliant docu-
ment that enables reuse of XML techniques and tools (such as XSLT) for flexible
interpretation and manipulation of text documents containing tables.

One can also view this approach as mapping a larger collection of annotated
documents into “equivalent” XML documents, or reinterpreting an annotated
fragment such as <elem "P1" "P2" "P3" .../> as a
concise description of sequentially assigned attributes in an XML fragment such
as <elem one="P1" two="P2" three="P3" .../>.

Encoding tables in Prolog for querying provides flexible alternative to using
Water or XML/XSLT. However, for document representation and manipulation,
XML/XSLT-based approach is more powerful. Furthermore, treatment of more
general tables such as those containing multiple columns with common head-
ings, or containing non-uniform rows combining multiple tables, or containing
tables multiple units of measure, etc is non-trivial and complicated even for this
approach.

The essence of Semantic Web is to make explicit semantics of data in a
machine processable form. What we have accomplished here is a pragmatic first
step in the context of tables that enables programming in various interpretations
respecting the semantics of an annotated table.

References

1. Antoniou, G., and van Harmelen, F.: A Semantic Web Primer , The MIT Press,
2004.

2. Cohen, W. W., Hurst, M., and Jensen, L. S.: A Flexible Learning System for Wrap-
ping Tables and Lists in HTML Documents, In: The Proceedings of the Eleventh
International World Wide Web Conference (WWW 2002), pp. 232-241, 2002.

3. Fensel, D., Hendler, J., Lieberman, H., and Wahlster, W. (Eds.): Spinning the Se-
mantic Web: Bringing the World Wide Web to Its Full Potential , The MIT Press,
2003.

4. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness, In: Artificial
Intelligence, 118(1-2):15-68, 2000. (Special issue on Intelligent Internet Systems.)

5. Pande, A. K.: Table Understanding for Information Retrieval , Master’s Thesis, Vir-
ginia Polytechnic Institute and State University, 55 pages, 2002.

6. Pinto, D., McCallum, A., Wei, X. and Croft, W.B.: Table Extraction Us-
ing Conditional Random Fields, In: SIGIR ’03 Conference, pp. 235-242, 2003.
(http://www.ciir.edu)

7. Plusch M.: Water : Simplified Web Services and XML Programming, Wiley Pub-
lishing, 2003. (http://www.waterlanguage.org/, Retrieved 5/10/2005.)

8. Pyreddy, P. and Croft W. B.: TINTIN: A System for Retrieval in Text Tables, 2nd
ACM International Conference on Digital Libraries, pp. 193-200, 1997.

9. Silberhorn H.: TabulaMagica: An Integrated Approach to Manage Complex Tables,
In: 2001 ACM Symposium on Document engineering, pp. 68-75, 2001

10. http://www.cs.umd.edu/projects/plus/SHOE/index.html, Retrieved
5/10/2005.

11. W3C Semantic Web URL: http://www.semanticweb.org/, Retrieved 5/10/2005.

12. Thirunarayan K., Berkovich A., and Sokol D.: An Information Extraction Ap-
proach to Reorganizing and Summarizing Specifications, In: Information and Soft-
ware Technology Journal , Vol. 47, Issue 4, pp. 215-232, 2005.

13. Thirunarayan, K., On Embedding Machine-Processable Semantics into Docu-
ments, In: IEEE Knowledge and Data Engineering Journal , Vol. 17, No. 7, July
2005.

14. Wolfram, K: Compositional Syntax and Semantics of Tables, SQRL Report No.
15, Dept. of Computing and Software, McMaster University, 62 pages, 2003.

15. Zanibbi R., Blostein D., and Cordy J. R.: A Survey of Table Recognition: Models,
Observations, Transformations, and Inferences. International Journal of Document
Analysis and Recognition, Vol. 7, No. 1, pp. 1-16, Sept. 2004.

