

A MODULAR APPROACH TO DOCUMENT INDEXING AND SEMANTIC
SEARCH

Dhanya Ravishankar, Krishnaprasad Thirunarayan, and Trivikram Immaneni
Department of Computer Science and Engineering

Wright State University, Dayton, OH-45435.
dhanyars@yahoo.com, t.k.prasad@wright.edu, timmanen@cs.wright.edu

http://www.cs.wright.edu/~tkprasad

ABSTRACT
This paper develops a modular approach to improving
effectiveness of searching documents for information by
reusing and integrating mature software components such
as Lucene APIs, WORDNET, LSA techniques, and
domain-specific controlled vocabulary. To evaluate the
practical benefits, the prototype was used to query
MEDLINE database, and to locate domain-specific
controlled vocabulary terms in Materials and Process
Specifications. Its extensibility has been demonstrated by
incorporating a spell-checker for the input query, and by
structuring the retrieved output into hierarchical
collections for quicker assimilation. It is also being used
to experimentally explore the relationship between LSA
and document clustering using 20-mini-newsgroups and
Reuters data. In future, this prototype will be used as
experimental testbed for expressive, context-aware and
scalable searches.

KEY WORDS
Search and Querying, Tools, Latent Semantic Indexing,
Domain-Specific Search, Modular Search Engine,
Document Clustering

1. Introduction

The state-of-the-art search engines (such as Google)
provide a scalable solution for flexible and efficient
search of Web documents, capturing collective Web
“wisdom” to rank order the retrieved documents. This
approach to search cannot always be expected to work
well for documents pertaining to specialized domains
where implicit background knowledge and vocabulary
can be exploited to improve the accuracy of the retrieved
results [1]. In general, precision can be improved through
disambiguation, and recall can be improved by
considering meaning preserving query variations
[2][3][4].

Verbatim searches can be generalized in a number of
directions such as by using information implicit in the
English language and in the document collection.
Eliminating stop words and affixes, proximity based
searches, etc can capture semantic invariance due to word
inflection and permutations, improving recall. English

language synonyms can be used to improve recall, but
including synonyms for all possible senses can adversely
affect precision. Latent Semantic Analysis approach
effectively regroups the document collection on the basis
of occurrences of correlated words inferred from the
document collection, so that some documents that lack the
query words may be retrieved, and other documents that
happen to contain the query words in a different context
may be skipped [5][6].

In this paper, we investigate systematic generalization of
keywords-based syntactic queries to concept-based
semantic queries by utilizing linguistic information (such
as synonyms) available explicitly, and domain-specific
information (such as term correlations or associations)
available implicitly in the document collections and
explicitly through controlled vocabularies. Furthermore, it
is important to locate and highlight the query hits in the
context of a document in order to enable access to
relevant portions of the document (because the user may
not be aware of the automatically included context). In
order to ensure that the search tool is efficient, flexible,
and usable in practice, and extensible, customizable, and
evolvable in future, mature software components have
been employed in developing the infrastructure.

The content indexing and intelligent search tool discussed
above has been put to novel use in performing domain-
specific information extraction from documents (for
example, Materials and Process Specifications), by
exploiting it for semi-automatic mapping of document
phrases to controlled vocabulary terms. That is, one can
(i) determine all controlled vocabulary terms that can
(partially) match a query phrase, (ii) determine all
controlled vocabulary terms that appear in a document
and locate the corresponding document phrases, and (iii)
determine all partially matching controlled vocabulary
terms that can potentially be extended to match a
document phrase, deserving further human intervention
for disambiguation.

To demonstrate the extensibility of the tool for improving
user experience with respect to query input and display of
query response, a spell-checker module and a simple
technique for organizing search results into finer groups
respectively has been incorporated. It is also being used to

experimentally explore the relationship between LSA and
document clustering. Specifically, the empirical
relationship between the number of significant
eigenvalues in the SVD decomposition and the number of
document clusters is being studied. In future, this
prototype will be used as experimental testbed for
expressive, context-aware and scalable searches.

Section 2 provides architectural and implementation
details of the content-based indexing and intelligent
search prototype we have built after a brief review of the
software components used. Section 3 describes the
prototype, and evaluates its effectiveness. Section 4
concludes with potential future work.

2. Architectural and Implementation Details

The content-based indexing and semantic search
prototype, shown in Figure 1, takes a document collection
and parameters specified through configuration files, and
carries out the following steps:

• Creates and maintains various indexes for the
document collection for performing efficient
searches using Lucene. The inverted indexes are
also used for generating term-document space
based on LSA using JAMA library.

• For a user query and options, performs syntactic
phrase matches accommodating morphological
processing using Porter stemmer, wildcard
pattern matches, boolean queries, query
expansion using synonyms for search terms
provided by WordNet via JWNL library,
executes proximity queries, and uses LSA
techniques to determine relevant documents.

• Highlights or tags the search results in the
original document and displays excerpts of the
matches to the end user.

The prototype has also been employed, among other
things, to index and search domain-specific controlled
vocabulary of technical terms presented as XML files, to
assist in semi-automatic content extraction from materials
and process specifications. The implementation details of
the various components of the prototype follows.

2.1 Lucene Overview

Lucene, provided by Open Source Apache project, is a
Java API for indexing and searching text documents that
can be tailored and integrated into applications [7].
Lucene builds inverted indexes for the documents to be
searched and stores statistics about the terms contained in
the text. The document text is pre-processed by Analyzers
to extract indexable tokens. Lucene supports case
conversions, stop words elimination, and performing
other input modifications. In order to facilitate searching
of the indexes, Lucene provides IndexSearcher and
QueryParser interfaces that translate Google-like

search expression to Lucene’s API representation of the
query.

Overall, Lucene is a high-performance, text search engine
library with smart indexing strategies that can be used in a
wide range of applications because of its flexibility.

Figure 1. Architecture of Content-based Indexing and
Semantic Search Engine

2.2 Java WordNet Library

WordNet is an electronic lexical database that organizes
English nouns, verbs, adjectives, and adverbs into
synonym sets, each representing one underlying
lexicalized concept [8]. Polysemous word forms are those
that appear in more than one synset, therefore
representing more than one concept. Associated with
every word form is a count of the number of senses that
the word form has when it is used as a noun, verb,
adjective, or adverb.

JWNL is an API for accessing WordNet style relational
dictionaries [9]. It provides functionality beyond data
access, such as relationship discovery and morphological
processing.

2.3 JAMA Library

JAMA is a basic linear algebra package for Java developed
by MathWorks and NIST [10]. Specifically, it provides
five fundamental matrix decompositions, namely,
Cholesky Decomposition of symmetric, positive definite
matrices; LU Decomposition (Gaussian elimination) of

Inverted
Document

Index

LSA
Term
Matrix

Document
Indexer

Configurer

Searcher

Query
Modifier

Highlighter

WordNet

Output

User

Domain
Library

Inverted
DLIndex

DL Term
Locator

Document
collection

rectangular matrices; QR Decomposition of rectangular
matrices; Eigenvalue Decomposition of both symmetric
and nonsymmetrical square matrices, and Singular Value
Decomposition (SVD) of rectangular matrices.

The SVD computation on term-document matrix for
Latent Semantic Analysis is obtained through the use of
JAMA library in the prototype.

2.4 Configurer and DocumentIndexer

Configurer object provides initial settings information
such as paths to the data directory containing the
documents to be indexed, controlled vocabulary file, the
index directories, the location of the property file for
initialization of JWNL package used with WordNet, and
output path for creating copy of the retrieved documents
with the search results highlighted/tagged.

DocumentIndexer uses values specified by the
Configurer and maintains various indexes using
different analyzers such as standard analyzers, stemmer
analyzers, synonym analyzers, etc. Initially, synonym
analyzers were used to generate synonyms of document
words as aliases at the time of tokenization. This turned
out to be very space and time consuming, and was
avoided in the final prototype.

2.5 LSA Term Document Matrix Generator

The matrix generator uses the indexing statistics obtained
from the DocumentIndexer to generate the term
weights in the term-document matrix for performing
Latent Semantic Analysis of the document collection.
TDM is analyzed by singular value decomposition to
derive a latent semantic structure model. Because of the
computational complexity of SVD, the matrices are made
persistent by storing them along with the document
indexes, to enable multiple search queries on the
document collection.

2.6 Searcher and Query Modifier

Searcher object matches queries to either the document
collection or the controlled vocabulary (also called the
domain library). It uses Lucene APIs to translate user
queries to Lucene’s internal query representation.
Depending on the data source, it initiates the search on the
indexes stored in directories specified by the
Configurer.

The Searcher, similar to the DocumentIndexer,
makes use of the corresponding analyzer for different
kinds of search. It also accepts options to change the
default proximity values to be used with phrasal searches.
For synonym-enabled searches, Searcher allows
synonym expansion for explicitly selected query terms or
all of the terms if no specific term has been selected. See
Figure 2. A new operator ‘#’ has been introduced and

used as a prefix to specify the terms to be expanded with
aliases at the time of search. Searcher is also responsible
for determining relevant documents based on the LSA
approach. It makes use of the term-document matrix,
SVD matrices generated by LSA Matrix Generator and
the term-weighted query vector corresponding to the user
query to compute cosine similarity of the query with the
documents in the new vector space (k-value = 100).

Figure 2. Enhanced search illustrating wildcard

pattern and synonym expansion

Query Modifier objects produce queries in Lucene’s
internal query format and are used in conjunction with
searches to obtain altered queries that match the user
specifications such as to incorporate proximity value
changes, synonym expansion using WordNet, etc. In the
prototype, if the number of synonyms is large, Query
Modifier uses heuristics to select synonyms to be used
for query expansion based on frequency of usage. It also
incorporates user input proximity values for phrase
queries.

2.7 DL Term Locator

This is a novel application of indexing and search tool
infrastructure in the context of content extraction from
materials and process specs, and provides an interesting
alternative to the customized tools we developed
laboriously [11].

A spec describes requirements on the processing of a
material (alloy) in the mill, and the capabilities that the
alloy should possess eventually. A domain library is a
domain-specific controlled vocabulary and consists of a
set of domain library items. Each item is a sequence of
terms. Specification Definition Representation (SDR),
together with the domain library, constitutes an ontology
to articulate the semantic view of the components that
comprise a spec, and capture user's interpretation of the
spec. Computer assisted content extraction involves semi-
automatic recognition of phrases in spec that are
associated with requirements on an alloy, and subsequent

synthesis of the SDR fragments, to assist an extractor.
Content extraction requires formalizing spec phrases
using a domain library. Given that, in general, a spec does
not conform to any prescribed vocabulary, a viable semi-
automatic approach is to recognize and locate as many
phrases as possible that can map to unique domain library
item, and for those phrases that can only partially match
domain library items, generate all possible candidates for
manual disambiguation. In practice, this approach can
improve the quality and efficiency of the laborious
manual extraction task by automating some of the routine
mechanical tasks.

Figure 3. Matching DL Items; DL Term and its
location in the document

Domain Libraries (DL), which have evolved over a
decade or so and contain roughly 10,000 items, exist as
XML files. DocumentIndexer indexes the contents of
the DL after parsing these XML files using Xerces XML
parser. DL Term Locator has the responsibility to
automatically identify words/phrases in spec that also
appear as DL terms/items. In other words, the DL Term
Locator tags explicit occurrences of the DL Items in a
given document. In addition, it also lists spec words that
cannot be directly matched to any of the DL items, but
which nevertheless occur in some of the DL items, along
with the DL items wherein they appear. See Figure 3.
(Recall that, in contrast, Searcher accepts an arbitrary
phrase and tries to match it with the DL items that have
been indexed.)

DL Term Locator component makes use of the
DL Index and the document/spec index to obtain terms
common to both. It also determines the DL-items wherein
these terms appear and extracts those items from DL for
further analysis. The probable set of items thus retrieved
is searched for in the document index based upon some
user specified proximity measures to determine
approximate matches. The matches obtained for DL terms
are returned along with the items wherein they appear,

and explicitly matching DL items are returned as a list for
the tool to appropriately present to the user.

2.8 Match Highlighter

If the searcher finds hits in the document collection for a
specific query, then a Highlighter creates a file
containing all the matched terms of the query properly
highlighted (actually HTML bold faced) for user’s
convenience. It also displays excerpts from the matched
passages in the “hit” documents.

Domain Library matches are treated slightly differently
by the Highlighter because of the size of the DL
files. For DL matches, the output file created contains
only the matching DL items instead of reproducing the
original DL file with the matches tagged. DL Term
Locator also highlights occurrences of the DL items
and the terms in the document.

3. Experimental Evaluation

The overall approach is evaluated on query
expressiveness, efficiency, and effectiveness, and on
modularity through extension and reuse.

3.1 Query Effectiveness

Searches were generalized both syntactically and
semantically as evidenced from our experiments with
materials and process specifications, and the MEDLINE
collection:
(i) Syntactic variations (e.g., stemming): “Test
certificate” query matched document phrases such as
“certificate of test”, “test certification”, etc. Similarly,
“dia*” matched “dia”, “diameter”, etc, “acc* level
quality” matched “Acceptable level of quality”, etc.
(ii) Semantic invariance (e.g., using synonyms): “Tensile
strength” query matched the document phrase “ductile
force”, “part number” matched “part and lot number”,
“mold” matched “cast”, “castings”, “forge”, and
“forging”, etc. “Insufficient immunity” matched
“immune deficiency”, “causes cancer” matched “induces
cancer”, “reasons for cancer” etc.

In order to compare the impact of LSA, the prototype was
tested for all searches with the MEDLINE collection.
Because of resource constraints, we used about 5000+
index terms from 500 documents in the collection. A 100-
factor SVD of the above matrix was obtained and stored
for later searches. It took about 12 minutes (Wall Clock
time) to generate the index on a Pentium 4 machine (2.53
GHz CPU, 1GB memory) running Windows XP.

Table 1 lists the values for recall and precision obtained
for some of the typical queries for enhanced search and
LSA enabled search respectively. LSA-based searches
consistently produced search results with better precision

as compared to standard and enhanced searches. Recall
was, however, generally higher for enhanced searches
(with accompanying steep decline in precision). The work
reported in [13] provides further analysis of the efficacy
of the LSA techniques on large document collections.

Table 1. Recall and Precision on MEDLINE collection

with Different Search Strategies

Enhanced Search LSA Search
 Query Recall Precision Recall Precision
“electron
microscopy of
lung or bronchi”

 0.86 0.2 0.91 0.5

“the crossing of
fatty acids
through the
placental
barrier. normal
fatty acid levels
in placenta and
fetus”

 0.96

 0.08

 0.85

 0.63

“the use of
induced
hypothermia in
heart surgery,
neurosurgery,
head injuries
and infectious
diseases.”

 0.96

 0.07

 0.82

 0.3

“bacillus subtilis
phages and
genetics, with
particular
reference to
transduction.”

 1.0

 0.12

 0.95

 0.83

3.2 Modularity through extension and reuse

Ideally, the documents retrieved as a result of a search
should be grouped on the basis of word senses so as to
improve precision via group labels. Given that there is no
simple way of determining or expressing word senses, as
a conservative approximation, we explored grouping of
documents on the basis of synonyms and labeling the
group with the synonym its members contain.

In order to improve query entry capability and organize
the results of a query, two interesting enhancements were
incorporated into the indexing and search tool. First, the
input query was processed through Jazzy, a Java Open
Source Spell-Checker [14], as shown in Figure 4. Second,
the flat list of retrieved documents was grouped in a
hierarchy based on the synonym found, so as to be able to
peruse or ignore an entire sub-group of documents (to
better approximate the relevant word sense) as shown in
Figures 5. The search for “deficiency” generates hits for
documents containing “lack”, “deficiency”, “want” and
“insufficiency” when experimenting with the MEDLINE
collection. The word “want” seems a bit remote in this
query context, and hence, the documents within the folder
labeled “want” can be skipped from consideration.

Figure 4. Spell-checking input dialog

Figure 5. Grouping retrieved results

3.3 LSI and Clustering

Under the assumption that a dataset contains clearly
defined document clusters, the number of document
clusters and the number of significant singular values of
the term document matrix are correlated [15][16]. To
explore its applicability to the text clustering benchmarks,
we experimented with the 20-Newsgroups and Reuters-
215781 newswire stories datasets [17]. Due to the heap
space restrictions imposed on the Java runtime by the
available 1G main memory, only 2K documents could be
used from each dataset at a time. The 20-Mini-
Newsgroups has postings from 20 Newsgroups (including
cross-postings), while each Reuters’ sub-collection has
documents belonging to around 70 topics. With the
exception of filtering the body of each Reuters’
document, no other clean-up was performed. Figures 6
and 7 show the general distribution of the normalized
singular values (w.r.t. the maximum singular value) as a
function of the dimensions. The singular values seem to
fall off rather precipitously, reducing to a seventh and a
fifth of its initial value respectively around the dimension
equal to the number of document clusters.

20-mini-newsgroup

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Dimensions

N
or

m
al

iz
ed

 S
in

gu
la

r V
al

ue
s

Series1

Figure 6. 20-Mini-Newsgroup dataset results

Reuters-215781 Newswire Stories

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Dimensions

N
or

m
al

iz
ed

 S
in

gu
la

r V
al

ue
s

Series1

Figure 7. Reuters-21578 newswire dataset results

4. Conclusion

The prototype enhanced query effectiveness through
improvements in recall and precision of search results,
achieved by incorporating the language background
through WordNet and exploiting document collection
characteristics through LSI. It also provided partial
assistance in content extraction from documents that
involve use of controlled vocabularies. Overall, our
approach and the implemented infrastructure can form the
basis for creating expressive search and query tools
underlying IE/IR systems, and for comparing existing
techniques [12]. As to potential immediate enhancements,
one can filter synonyms of the appropriate word sense
based on the domain-specific context, and incorporate
antonyms into queries and domain-specific background
information into LSI.

5. Acknowledgements

We thank Nalini Pitchika for enlightening discussions.

References:

[1] T. Haveliwala, A. Gionis, Klein, and P. Indyk.

Evaluating Strategies for Similarity Search on the

Web, Proceedings of The Eleventh International
WWW Conference, Hawaii, May 2002.

[2] D. Ravishankar, Document Indexing and Semantic
Search, M.S. Thesis, Department of Computer
Science and Engineering, Wright State University,
2004.

[3] Karen Sparck Jones and Peter Willett. Readings in
Information Retrieval. Morgan Kaufmann, 1997.

[4] R. Baeza-Yates and B. Riberiro-Neto, Modern
Information Retrieval, Addison-Wesley-Longman.
1999.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis, Journal of the American Society
for Information Science, 41(6), pp. 391-407, 1990.

[6] Latent Semantic Analysis URLs:
http://javelina.cet.middlebury.edu/lsa/out/lsa_definiti
on.htm, http://lsa.colorado.edu/,
http://www.cs.utk.edu/~lsi/ (Visited: April 14, 2005)

[7] Lucene URL:
http://jakarta.apache.org/lucene/docs/index.html
(Visited: April 14, 2005).

[8] WordNet URL:
http://www.cogsci.princeton.edu/~wn/ (Visited:
April 14, 2005)

[9] Java WordNet Library URL:
http://sourceforge.net/projects/jwordnet/ (Visited:
April 14, 2005)

[10] JAMA Library URL:
http://math.nist.gov/javanumerics/jama/ (Visited:
April 14, 2005).

[11] K. Thirunarayan, A. Berkovich, and D. Sokol, An
Information Extraction Approach to Reorganizing
and Summarizing Specifications, In: Information and
Software Technology Journal, Vol. 47, Issue 4, pp.
215-232, 2005.

[12] P. Husbands, H. Simon, and C. Ding: On the Use of
Singular Value Decomposition for Text Retrieval,
Proc. of SIAM Comp. Information Retrieval
Workshop, 2000.

[13] G. Dupret: Latent concepts and the number
orthogonal factors in latent semantic analysis,
Proceedings of SIGIR-2003, pp. 221-226, 2003.

[14] Jazzy Spell-Checker URL:
http://jazzy.sourceforge.net/ (Last visited: April 14,
2005).

[15] C.H. Papadimitriou, P. Raghavan, H. Tamaki, and S.
Vempala. Latent Semantic Indexing: A Probabilistic
Analysis. Proceedings of the ACM Conference on
Principles of Database Systems (PODS), pp. 159-
168, 1998.

[16] Y. Azar, A. Fiat, A. Karlin, F. McSherry and J. Saia,
Spectral Analysis of Data. Proceedings of the ACM
Symposium on Theory of Computing, pp. 619–
626, 2001.

[17] http://kdd.ics.uci.edu/summary.data.application.html
(Visited: April 14, 2005)

